AFIT/GSS/LASM3D-3

ADA27594]

THE DEVELOPMENT AND USE OF AN EVALUATION

MECHANISM FOR THE ASSESSMENT OF

SOFTWARE CONFIGURATION MANAGEMENT TOOLS

THESIS

Wayne M. Descheneau, Captain, USAF
Neil W. Robinson, Captain, USAF

AFIT/GSS/LAS/93D-3

o ljj)’ 94-05457
29° U AR

Approved for public release; distribution unlimited

A4 92 18 060

Best
Available

Copy

Disclaimer

The views expressed in this thesis are those of the authors and do

policy or position of the Department of Defense or the U. S. Govenment.

not reflect the official

—

| docession For

Pl

NTIS GRA&I 2
DTIC TaB 0
Unannounced 0
Juati)’ie-ﬂtioﬂ—____,‘
By
Dissritutiong, o
Avaliability
%11 and/or

Biat Spec 1&1

Preface

The purpose of this research effort was to help Air Force managers in the Air Force
1) comprehend the SCM requimmtscontai;\edinDepmdDefensestandardsaMZ)
understand how commercially availablc automated SCM tools can help meet specific SCM
requirements on a software development effort. To accomplish this goal we developed an
evaluation mechanism, the heart of which was a matrix built with SCM requirements on the
vertical axis and common tool functionality on the horizontal axis. This cross reference presented
in the matnix will identify which tool functions are uscd (if any) by a given tool to mect each SCM
requirement of interest. This evaluation mechanism was used to assess two commercially available
SCM tools as a test to determine its effectiveness.

We extend our gratitude to those who assisted us during this effort. First, we thank our
thesis advisors, Mr. Dan Ferens and Capt Brian Holmgren, for their guidance and encouragement
throughout this research effort. We appreciate the support provided by Julie Kingsbury from
TRW in cooperation with the Software Technology Support Center at Hill AFB, Utah. Her efforts
saved hours of investigation and headaches by providing tool vendor points of contacts and getting
us moving in the right direction. We also thank Mrs. Joan "Zip" Robinson for her copy editing
skills and copious review of our final draft thesis.

Most importantly, I, Wayne, apprcciate the support of my family. 1 express my decpest
gratitude to my wife, Torie, for her understanding while I was locked av'vay in my study and the
confidence that she inspired within me. I thank Bacchus, my Alaskan Malamute, for his

playfulness that kept me sane by telling mc when it was time to take a break.

Wayne M. Deschencau

Nci! W. Robinson

Table of Contents
Page
Preface e il
ListOf FigUres o e vii
Listof Tablest i i e ettt viii
ACTONYIMISttt ittt et ittt e it ettt ettt it e ix
ADSIIaCt .. . e e e xi
L IntroducHOon i i i e e e e 1-1
General ISSUE e e 1-1
SpecificProblem e 1-2
Research Objectivesot iii ittt 1-3
Research QUESHONS i it i 1-3
Scopeof Research i e 14
OV eIV W . .. e e e 1-4
IL Literature Review e 2-1
CINrodUCHON e 2-1
Overview of Software Configuration Management 2-1
Fundamental Elements of Software Configuration Management 2-2
Software Configuration Identification 222
Breaking Down the System Software 2-3
Defining System Software and Components 24
Labeling SCIsttt ittt 2-5
Labeling SCIRevisionscciiiviiininnnnn. 2-6
Software ConfigurationControl 2-7
Documentation0, 2-8
Organizational Body 29
Procedures i e, 29
Software Configuration Auditing. 2-11
Software Configuration Status Accounting 2-12
Recording i, 2-12
SOMNg ... e e 2-13
Reporting ittt 2-13
Software Configuration Management in DoD Software Development. 2-15
Software Configuration Management Requirements. 2-15
Establish and Document Policies 2-16
Identification i 2-16

Audiing i e e e 2-17

Status Accounting it 2-17
SoftwareLifeCycle ittt 2-17

System Requirements Analysisand Design 2-19

Software Requirements Analysis 2-20
PreliminaryDesign it 2-20
DetailedDesign0iiiiiiiieniinnnennnnnn, 2-21
CodingandCSU Testingcciiviivinvennnn. 2-21

CSC Integrationand Testingc.counvunn... 2-22

CSCITestngiiniiniiniiitnreennnnennnannnn, 2-22
ProductionandDeployment 2-23

Models used in Developing SCM Tools coiiiiuiaan .. 2-24
Checkout/CheckinModel 2-24
Definition of WorkingContextccvvnrnn.. 2-24

Maintenance of VersionHistory 2-25

Control of Concurrent Changesc.covvvnn., 2-25

Management and Propagationof Change. 2-26
CompositionModel i, 2-26
Definition of Working Context 2-26

Maintenance of Version History 2-27

Controlof ConcurrentChanges, 2-27

Management and Propagationof Change. 2-27

Long TransactionModel i, 2-27
Definition of WorkingContextccoovnaen... 2-28

Maintenance of VersionHistory 2-29

Control of ConcurrentChangesc.cuvn.n. 2-29

Management and Propagationof Change. 2-29
ChangeSetModel i, 2-30
Definition of WorkingContext 2-30

Maintenance of VersionHistory. 2-30

Control of Concurrent Changes 2-31

Management and Propagationof Change. 2-31

Model Summary i it i, 2-31
Summary Of Review i e i e e 2-31
II. Methodologyciiiiniiii ittt ittt ittt ie et 3-1
OVEIVIEW . .. i e et e e e 3-1
Development of the Evaluation Mechanism 3-1
SCM Requirements AnalysiSc.cvuivemerniannnnnnnn. 3-1

SCM Tool Fundamentals Analysis 32
Constructing the Evaluation Mechanism 33

Tool Evaluationc.oo ittt ittt iiaenannna 34
Populationof Interest ittt iiiiinnnnnenn. 3-4
Sampling Strategy oot e e 35
DataGathering ittt ittt iinnainnnnnn 3-5

iv

Identification i 35

StralegY i e 35

. Evaluationand Analysis oLl 35

SUMMALY ... i e 3-6

. IV, ANALYSIS m i it e e e e et 4-1

L0y T U 4-1

EvaluationMechanism i i, 4-1

SCMRequirements Defined, 4-1

Configuration Identification Requirements. 4-2

Configuration Control Requirements 4-5

Configuration Auditing Requirements 4-8

Configuration Status Accounting Requirements. 4-10

SCM Tool Functionality Defined 4-13

Database Management 4-14

ConfigurationBuild 4-14

DecompositionControlo, 4-15

Work AreaControl i, 4-15

Change Control ittt 4-16

BaselineManagement 4-17

CuSIOMIZAtONovtiiiitii it ieeeenenen., 4-17

SCM Tool Evaluation Mechanism. 4-18

Using the Evaluation Mechanism i, 4-21

ToolSampleDefinedot iiiannnnnnan. 4-21

ToolEvaluationi.itininimiiiiiit it 4-21

Aide-De-Camp(ADC) ..ottt it 4-22

Product Configuration Management System (PCMS) 4.23

Tool AssessmentFindings 4-25

SUMMATY e et e 4-27

V. Conclusions and Recommendationscoiitiiiiiininnnnnennnn.. 5-1

OV IV W . . i e e e 5-1

AnalysiSResults e 5-1

EvaluaionMechanism i, 5-1

Tool Evaluation 0 i, 5-2

LImitationsttt ittt it it et e e 5-3

Further Study Conceming the Evaluation Mechanism. 5-3

Further Study Concerning Tool Evaluations 54

Summary e e e e 5-5
Appendix A: Software Configuration Management (SCM) Reqmremcms Standards

. CrossReference it i, A-1

Appendix B: Software Configuration Management (SCM) Tool VendorList B-1

v

Appendix C: Software Configuration Management (SCM) Tool Evaluation

Aide-De-Camp (ADC) oot C-1
Appendix D: Software Configuration Management (SCM) Tool Evaluation

Product Configuration Management System PCMS). D-1
Bxbh(;graphy .. BIB-1
L VIT-1

Figure

List of Figures

Page
Software System Hierarchy L. 24
Component Labeling Scheme e 2-5
Labeling Scheme for Component Revisions 2-7
Generic Change Control Process 2-10
Computer Software Development Cycle 2-18
File Versioning in the Checkout/CheckinModel 2-25
Relationship between Repository and Workspace 2-28
Component and Configuration Change Sets 2-30
Requirements-Functionality Matrix Format. 3-3
SCM Requirements-Functionality Matrix. 4-19
SCM Tool Evaluation Mechanism 4-20

vii

Table
4-1.
4-2.
4-3.
4-4.
4-5.

4-6.

List of Tables

Page
Configuration Identification Requirements 4-3
Configuration Control Requirements iivinn... 4-5
Configuration Auditing Requirementso, 4-8
Configuration Status Accounting Requirements 4-10
Requirements Met by Areaof Functionality 4-25
Average Number of Functional Areas Meeting Requirements 4-26

ACSN
CALS
CCB

CDR

cM
CPIN
csc
cscl
csu
DID
DoD
ECP
EMD
ERR
FCA
HWCI
DD

IRS

PDR
SCI
SCM

Acronyms

Advance Change Study Notice

Computer aided Acquisition and Logistics Support
Configuration Control Board

Critical Design Review

Configuration Item

Configuration Management

Computer Program Identification Number
Computer Software Component
Computer Software Configuration Item
Computer Software Unit

Data Item Description

Department of Defense

Engineering Change Proposal
Engineering and Manufacturing Development
Engineering Release Record

Functional Configuration Audit

Hardware Configuration Item

Interface Design Document

Interface Requirements Specification
Physical Configuration Audit

Preliminary Design Review

Software Configuration Item

Software Configuration Management

ix

SCN Specification Change Notice

SDD Software Design Document
SDF Software Development File
SDL Software Development Library
SDP Software Development Plan
SDR System Design Review

SPS Software Product Specification
sSQpp Software Quality Program Plan
SRR System Requirements Review
SSR Software Specification Review
STD Software Test Description

STP Software Test Plan

STSC Software Technology Support Center
TRR Test Readiness Review

UDF Unit Development Folder

VDD Version Description Document

WBS Work Breakdown Structure

AFIT/GSG/LAS93D-3

Abstract

This research effort investigated the development of a mechanism for use in the evaluation
of automated Software Configuration Management (SCM) tools. An examination of applicable
DoD standards identified the SCM requirements that could be levied on a development contractor
at the time of this writing. A literature search revealed the functionality common to the various
automated tools that were commercially available. These two sets of information were organized
and compiled to form a matrix, having rows comprised of the SCM requirements and columns
comprised of the tool functionality . For each requirement that was met, the intersection on the
matrix of the requirement and each functionality used to meet that requirement, in full or in part,
was checked or marked. This matrix was identified as the Requirements-Functionality matrix and
comprised half of the evaluation mechanism. The other half consisted of general information about
a given tool and an area to substantiate each requirement identified as being met by the particular
tool. The evaluation mechanism was then used on two commercially available SCM tools: Aide-
De-Camp and the Product Configuration Management System. The purpose was to 1) refine the
evaluation mechanism, 2) to determine the effectiveness of the evaluation mechanism, and 3)
evaluate the chosen tools. The results revealed which areas of SCM were focused upon and which
functions were used most often for each tool. The results also revealed that a thorough
understanding of each tool's capabilities was required in order to complete the cvaluation
mechanism. The evaluation mechanism prescribes a method for evaluating complex SCM tools
that forces the evaluator to gain intimate knowledge of a tool to effectively assess the tool's merits

for a given software development effort.

THE DEVELOPMENT AND USE OF
AN EVALUATION MECHANISM FOR THE ASSESSMENT OF
SOFTWARE CONFIGURATION MANAGEMENT TOOLS

L. Introduction

General Issue

In order for an Air Force program to succeed, it is critical that the manager be able to
control and account ror the system throughout its life cycle. Today's systems are becoming
increasingly dependent on software, resulting in more software components to manage, which
exponentially increases the difficulty of maintaining configuration control over the system (Forte,
1990:24). This trend, likely to continue as more and more emphasis is placed on software-
performing functions traditionally accomplished by hardware, will challenge managers because
software, unlike hardware, does not readily lend itself to visual inspection and is very susceptible to
change. As a result, software is difficult to control and manage.

The discipline afforded by Software Configuration Management (SCM) provides a mecans
of managing and controlling system software. Proper application of SCM involves 1) identifying a
software hierarchy and each software component within that hierarchy (Software Configuration
Ildentification), 2) controlling changes to these software components (Software Configuration
Control), 3) documenting such changes (Software Configuration Status Accounting), and 4)
auditing the overall software baseline to ensure that the actual software meets the specified
requirements and mirrors the documentation (Software Configuration Auditing). Proper
performance of these SCM activities will guarantee the integrity, correctness and supportability of
a system's software, leading to the success of the overall program. Unfortunately, because

software routinely comprises a large percentage of the overall system and is in an almost constant

state of transformation due to enhancements and defect correction, employing these SCM activities
can be a complex and tedious task (Bersoff and Davis, 1991:105).

Such mutability is characteristic of the software of most defense systems in the Air Force
and thus is a nightmare for the configuration manager. The problem of managing the muititudes of
software versions and releases that develop during the life of a typically large defense system may
be most effectively solved through the use of automated SCM tools (Millradt, 1990:6).

Specific Problem

In the Air Force, software systems either are designed and developed organically, or they
are contracted out to the defense industry. Regardless of the development environment, it is critical
that program management understand both the requirements associated with the four fundamental
SCM activities and the methods, or tools, commercially available to automate much of this
management endeavor. Managers of organic (in-house) efforts must first be able to articulate the
SCM requirements which will govern the life cycle development/support of their system(s), and
then procure an appropriate tool to automate and assist them in their SCM responsibilities. It is
essential for those who direct contracted development efforts to have knowledge of SCM
requirements and an appreciation of the various SCM tools and technologies available which will
better enable them to successfully specify SCM requirements to the contractor. When the Air
Force assumes respensibility for life cycle management and support of the configured end item,
this awareness will improve the chances that it will be satisfied with the SCM system delivered by
the contractor. The failure of many software programs is the direct result of either selecting an

SCM tool that was either inadequate or exceeded the needs of the program (Millradt, 1990:6). The

specific problem this research study addressed is: Typical Air F ment 1 aclear

1-2

Research Objectives

The overall objective in this research effort was to provide Air Force management the
compiled information necessary to comprehend the requirements which must be satisfied, the
activities which must be performed, and the capabilities which shouid be sought when selecting
tools to establish and operate a successful SCM system. In light of this, we established three
specific objectives:

1. Establish a standard framework (i.e. requirements, activities, etc.) for a Department of
Defense (DoD) SCM system.

2. Develop an evaluation mechanism which can be used to assess SCM tools for the
particular needs of an organization.

3. Evaluate a sample of SCM tools using this evaluation mechanism.

Research Questions

The research objectives were achieved by systematically answering the following
questions:

1. What SCM requirements or activities are stipulated by published standards and/or
guidelines? Answering this question enabled us to partially meet the first objective.

2. Where and how do SCM requirements play a role in the phases of defense system
software development? Integrating the answer to this question with those of the first question
enabled the definition of a standard functional framework for an SCM system, thus meeting the
first objective.

3. What requirements or activities are driven by the four fundamental elements of SCM?
Answering this question enabled us to partially meet the second objective.

4. How are tools modeled and developed to address SCM needs? Integrating the answer
to this question with those of the first three questions permitted the development of an evaluation

mechanism, thus meeting the second objective.

1-3

5. What current tools are available to automate SCM responsibilities? Answering this
question provided us with a population of tool developers from which to sample and assess
commercially available SCM technologies utilizing our evaluation mechanism and, thereby, met
the third objective.

Scope of Research

This research effort only addressed those Commercial-Off-The-Shelf (COTS) SCM tools
which are currently being used either directly by Air Force software development organizations or
by defense contractors developing software for the Air Force. Additionally, in an effort to align
this research effort with the DoD's mandate that all new software development be accomplished
utilizing the Ada programming language, we only sampled SCM tools that support Ada. Our
assessment of each sampled tool was not intended to be a regurgitation of the vendor's brochure
and/or user's manual. Instead, we addressed only those aspects of each tool directly impacting its
ability to meet the delineated SCM criteria of our evaluation mechanism. Finaily, where an SCM
tool was part of either an integrated Software Engineering Environment (SEE) or a broader
Software Engineering (SE) tool, we assessed only those functions and capabilities which were
specific to SCM.

Overview

This research effort provides Air Force managers or, more precisely, Air Force managers,
with an evaluation mechanism, or taxonomy, with which to assess potential SCM tools for use on
Air Force software development efforts.

Chapter 2 includes the results of an intensive review of published literature concemning the
SCM discipline. We reviewed literature pertaining to the four fundamental elements of SCM, the
current SCM requirements delineated in defense and industry standards and guidelines, the SCM

activities involved in life cycle development and support of defense systems, the fundamental SCM

1-4

models upon which all current SCM tools are developed, and documented evaluations of various
automated tools.

In chapter 3, we describe the methodology we employed to meet the objectives of this
research effort. In particular, we define our approach conceming the development of our
evaluation mechanism and the performance of the SCM tool selection and evaluation.

In chapter 4, we present our analysis of the criteria compiled to develop the mechanism
with which we evaluated each of the tools sampled.

Chapter 5 summarizes our conclusions and recommendations, and also includes a
discussion of the strengths and limitations of our SCM tool evaluation mechanism, the resulting

tool assessment, and our recommendations for further study.

1-5

I1. Literature Review

Introduction

As part of this research effort, we performed a search of published information dealing
with Software Configuration Management (SCM) and its associated tools. The results of this
search are presented in four sections. The first section provides a cursory overview of the SCM
discipline based on our review of technical journals. The second section addresses the four
fundamental elements of SCM. This part of the review fully develops the theoretical framework
behind each fundamental SCM activity. Sources included software management textbooks and
technical journals. The third section highlights the generally accepted SCM policy and activities
involved in DoD software development and support. This section details our findings based on the
review of software management textbooks, educational institution technical briefs, and published
standards of the military, DoD, and private industry. The fourth and final section describes the
current models around which SCM tools are developed. Sources for this section included software
management textbooks and technical journals. This literature review effort enabled us to gain the
necessary understanding and appreciation of SCM requirements and tool functionality to devclop

an evaluation mechanism for the assessment of the SCM tools sampled.

Overview of Software Configuration Management

Configuration management is the "set of techniques uscd to help define, communicate, and
control the evolution of a product or system through concept, development, implementation, and
maintenance phases” (Sweetman, 1990:5). For years after its conception, the discipline of
configuration management was applied to the development of cither hardware systems or hardware
elements of hardware-software systems (Bersoff, Henderson, and Sicgel, 1980:24). While such
development efforts addressed the configuration management of system hardware with meticulous

detail, system software was treated as a single entity, whose visibility during the overall system

evolution was suppressed (Bersoff, Henderson, and Siegel, 1980:24). However, as hardware
became more sophisticated, faster and more powerful, software became more prevalent in the areas
of application and percentage of overall cost (McCarthy, 1980:263). With the evolutionary
advances of the software industry, management of software development projects has come under
increasingly rigorous scrutiny.

Although configuration management was originally created to enable managers 1o control
hardware production, its principles have been tailored and refined to apply to software
development, production, and maintenance (McCarthy, 1980:263). According to Bersoff, SCM
provides the discipline for identifying the configuration of a software system at discrete points in
time, thereby systematically controlling changes to the configuration while maintaining its integrity
and traceability throughout the system life cycle (Bersoff, 1980:381). Unfortunately, because
SCM is an immature discipline still requiring further study, attempts by managers to implement

SCM have sometimes failed (Bersoff, Henderson, and Siegel, 1980:24).

Fundamental Elements of Software Configuration Management

It is commonly accepted among software management academicians and practitioners that
software configuration management can be broken down into the following four fundamental
activities: (1) software configuration identification; (2) software configuration control; (3)
software configuration auditing; and (4) software configuration status accounting. Without a
thorough understanding of each of these, an effective analysis in the realm of SCM cannot be
performed (Bersoff and Davis, 1991:107).

Software Configuration Identification. In order to track software effectively as it
continually changes throughout its life cycle, a manager must be able to clearly define the
components which comprise the system (Bersoff, Henderson, and Siegel,‘ 1980:27). This is the
goal of software configuration identification, a fundamental element which involves specifying and

identifying all software components throughout the life cycle of the system (Mission Critical

2-2

Computer Resources Management Guide, [no datc]: 10-2). Software configuration identification
accomplishes this by
1. breaking the system software down into a number of known manageable components,
2. defining each component,
3. uniquely labeling each component, and

4. uniquely labeling the various revisions that appear as these components change over
time (Mission Critical Computer Resources Management Guide, [no date]:10-3).

Breaking Down the System Software. The decisions involved in decomposing
the system software into components, generically referred to as software configuration items
(SCls), are probably the most important decisions to be made by project management (Berlack,
1992:81). This process is closely intertwined with the specification, analysis, and design of the
overall system. The software design hierarchy enables management to identify and control changes
to the various SCIs during the system's life cycle, and to estimate manpower and resources required
for each SCI's development, while simultaneously tracking its progress (Berlack, 1992:81).

In general, the design hierarchy of the software should be structured so its functionality is
easy to pinpoint and change, if necessary (Whitgift, 1991:17). Figure 2-1 illustrates how a
software system can be broken down hierarchically into computer software configuration items
(CSCiIs), CSClIs into computer software components (CSCs), and CSCs into computer software
units (CSUs) or into other CSCs which are, in tumn, broken into CSUs. In this hierarchy of SCls,
CSUs represent the most elementary units defined. A CSU usually refers to the embodiment of a
specific function (an algorithm or, later in the development cycle, the line(s) of software code that
implement the algorithm). Regardless of the hierarchical level, each type of element - whether a
CSCI, CSC, or CSU - represents an SCI since it is identifiable, controllable, necessary, traceable,
functional, modular and homogeneous (Berlack, 1992:84). Along these lines, software
configuration identification ensures that a software system will be divided into smaller, less

complex and more manageable items (Whitgift, 1991:18).

2-3

Defining System Software and Components. The system software is comprised
of one or more CSCls, each of which must be defined. At the very minimum, the software’s
extemal functional and performance requirements should be described, along with the design

constraints and attributes of the software as a whole (Berlack, 1992:86).

SYSTEM

SEGMENT SEGMENT

| 1 L
[csa | | ws | [swa | HWCI
T

] 1 | | | 1
[cscx—|L1Rs |[owa | [wwa] [uwa | | awa
L L

— — —— — — — s — — e e . o — e — — — e

Figure 2-1. Software System Hierarchy (Berlack, 1992:82)

This type of information is recorded in CSCI level documents such as the Software Requircments

Specification, Interface Requirements Specification, and Software Design Document. As lower-

2-4

level software elements are developed, more detailed information is incorporated into these top-
level CSCI documents. Data describing how an element was produced/compiled, and when and
why changes were made, should be documented for each SCI (Whitgift, 1991:63). This
information should be closely coupled with the SCI itself. Descriptive information about an SCI
can be included as a cover sheet in the case of a document, or as commented lines in an element of
source code (Whitgift, 1991:63). Formally defining the system software and its constituent
elements ensures that the status accounting function can effectively obtain information, as needed,
concerning the system sofiware.

Labeling SCIs. Each SCl in the design hierarchy must be labeled to provide it
with unique identification (Whitgift, 1991:56). Usually, labeling schemes do make use of the
design hierarchy wherein each incorporated SCI is named in a manner that it can be identified as a
sibling of a certain component and yet be distinguishable from the other components with the same

parent (Whitgift, 1991:56). Figure 2-2 illustrates this concept.

SC1 ,\
\Paxent Index
)
| | |
SCI 1 5ct,, SClsase
Child Index
| |
I | l l
SCI 111 3C1 I.IJL SCI 1LAST.1 sCl 1LAST2
Grandchild Index J- J-
T
L 1
SCi

Figure 2-2. Component Labeling Scheme (Bersoff, 1980:111)

As figure 2-2 indicates, the labeling scheme should explicitly exhibit the relationships among the
SCls in the design hierarchy, or tree structure. Figure 2-2 illustrates how indices can be used to
label a particular SCI \;Jhile explicitly showing its parentage (Bersoff, 1980:111). For example,
the software configuration item SCI, , 4 is the third offspring of the second offspring of the first

software configuration item of the system.

The labeling mechanism must manifestly distinguish between individual SCIs while also
clearly identifying the baseline level of each SCI; this particular level refers to the review or
approval level of an SCI at a particular point in time during the life cycle of the system (Berlack,
1992:100). In a larger context, a baseline is an SCI, or collection of SCIs, which specifies one or
more CSClIs at some "snapshot” in time (Bersoff, Henderson, and Siegel, 1980:27). The need for a
clear and efficient labeling scheme becomes even more critical when addressing the issue of
identifying SCI versions, which appear as SCIs change over a period of time.

Labeling SCI Revisions. As SCIs evolve through a series of changes, each
change must be distinguished from all other changes (Whitgift, 1991:57). There are several
different types of revisions: a minor change to an SCI (syntax, spelling, organization, etc.) results
in a level revision, while a major change (functionality, interface) results in a release revision, and
concurrent changes to an SCI result in variant revisions (Whitgift, 1991:58). This latter
revisioning permits an SCI to have multiple configurations, each of which specifies the SCI needed
to satisfy a given environment (operating platform, customer requirement, temporary change, etc.).
Figure 2-3 illustrates how each type of revision can be identified. In this example, when an SCl is
first labeled it is identified as revision 0, whether it is a release or a variant. For instance, 1.0
indicates the first release of an SCI identified, and 1.1 indicates the first revision of that release,
whereas, 2.0 indicates the second release and 2.1 is the first revision of the second release. This
concept also applies to the identification of variants, both permanent and temporary. The first
variant of release 2.0 is 2.0.1.0. The number 1 indicates the first variant and the second number 0

indicates the revision number of that variant. A temporary variant represents a configuration that

2-6

exists for a short time and eventually is merged with one or more permanent variants of that SCI as

illustrated in figure 2-3 below (Whitgift, 1991:38).

1.0 1.1 20 2.1 22 30 31 32 33

Permanent Vari 2.0.1.0 2.0.1.1 20.12 20.13 N

Permanent Vari 2.02.0 2.02.1 - Temporary Variants

Figure 2-3. Labeling Scheme for Component Revisions (Whitgift, 1991:58-60)

By combining the concepts of SCI labeling and SCI revision labeling, both the gencalogy
and the version of the software can be identified. For example, the first child of the parent SCI is
SCI, , and the second revision of the first release is 1.2. When these labeling schemes are
combined with each other, the second revision of the first release of the first child is SCI, ;[1.2].

If SCIs are clearly identified, their changes and respective baselines can also be identificd.
This provides an explicit documentation trail that links the stages of the software life cycle
(Bersoff, Henderson, and Siegel, 1980:28). In other words, the identification of software
configurations will enable a manager to know the system software's stage of development, the
history of each software change, and how the SClIs and their changes arc interdependent.

Software Configuration Control. Software is highly susceptible to change because of the
user’s tendency to add new features or capabilities, to correct past crrors, or to improve cfficiency
(McCarthy, 1980:267). The control of software configuration requires the focused management of
such changes by accomplishing approval, monitoring, and control of the conversion of design

objects into system software configuration items, followed by the changes to these items (Bersoff,

Henderson, and Siegel, 1980:221). Bersoff states that effective software configuration control
involves certain basic ingredients:

e documentation,

e an organizational body, and

o procedures (Bersoff, 1984:82).

These ingredients should insure that changes are processed, communicated, and incorporated in an
orderly manner (Berlack, 1992:109).

Documentation. This process includes both change and baseline documentation.
(Bersoff, Henderson, and Siegel, 1980:199). Software is only visible through its documentation
(i.e., listings, design specifications, etc.), and is only comprehensible when it is logically organized
and controlled as a baseline. Change documentation enables management to formally define and
precipitate proposed alterations (Bersoff, Henderson, and Siegel, 1980:199).

Baseline documentation consists of approved documents and related code that specify and
implement the software at a point in time in its development (Berlack, 1992:109). A particular
baseline documentation should reflect both the evolutionary status (i.e., developmental maturity
level) and the revolutionary status (i.e., version level) of the CSCI (Bersoff, Henderson, and Siegel,
1980:199). Controlling this form of documentation enables management to provide an
independent, common frame of reference to all observers of the system (Bersoff, Henderson, and
Siegel, 1980:180).

Software configuration control requires the documentation of changes, proposed to cither
enhance capabilities or correct a deficiency (Bcflack, 1992:111-113). Change documentation, such
as Change Requests, Fault Reports, and Engineering Change Proposals (ECPs), provides a mcthod
of tracking a change from its request to its implementation (Whitgift, 1991:131). The choice of
form depends on the circumstances necessitating the change. While Change Request forms are
designed to describe how the software must be changed or enhanced, Fault Report forms document

the symptoms of a fault, anomaly, or bug (Whitgift, 1991:139). Both the Change Request and

2-8

Fault Report forms are intended to address changes to non-baselined items. Engineers will
continually lobby for changes to be categorized as enhancements and therefore will employ Change
Requests, while the user will lobby for changes to be classified as defect corrections and thus will
utilize the Fault Report (Berlack, 1992:113). Both Change Requests and Fault Reports can be
precipitators of ECPs, depending on whether or not either results in a change to baselined software
or its documentation (Bersoff, Henderson, and Siegel, 1980:200). An ECP delineates both the
changes which are to be made to baselined components and the resulting cost, schedule, and
performance impact; therefore, it constitutes an amendment to the contract between the developer
and user (Berlack, 1992:133).

Organizational Body. Proposed changes must be reviewed and then either
approved or disapproved. The organizational authority for such decisions resides with the
Configuration Control Board (CCB) (Bersoff and Davis, 1991:106). The CCB is the heart of the
configuration ccatrol function and, as such, must be organized to be responsive to project
requirements (Bersoff, Hendersen, and Siegel, 1980:187). The CCB evaluates changes based on
such areas as operational impact, classification, interface impact, cost impact, schedule impact,
feasibility, and impact to quality and reliability (Berlack, 1992:143). Because of the range of its
responsibilities, the CCB should be comprised of representatives of every operational phase having
a legitimate interest in the proposed change (Whitgift, 1991:136). CCB representation normally
includes, but is not limited to, program management, system and software cngineering, sofiware
configuration management, quality assurance, and integrated logistics support (Berlack,
1992:141). During busy times, the CCB relies on and delegates authority to review and screening
boards. Such boards can savc many hours of CCB time by sorting through changes, thercby
enabling the CCB to concentrate on complete and workable change proposals (Berlack, 1992:144).

Procedures. Software configuration control provides for procedures by which
proposed changes can be reviewed, cvaluated, and implemented (Whitgift, 1991:153). According

to Bersoff, Henderson, and Siegel, "Procedures form a logical and enforceable scries of steps by

29

which changes (both evolutionary and revolutionary) to the system are processed” (Bersoff,
Henderson, and Siegel, 1980:181). Figure 24 depicts the basic steps involved in the change
control process. Notice that regardless of whether or not a proposed change is approved,
management must establish procedures for - and monitor the archiving of - disapproved changes

for future reference.

Ephsncements ——@n

Descrips Prepenai
Proposal
Cungog | /A
Configaration Contral
Siatus
Accoumting

Figure 2-4. Generic Change Control Process (Bersoff, 1984:84)

It is noteworthy that, even though actual change incorporation is not an SCM function,
monitoring any change implementation process which results in change incorporation does
constitute an SCM function (Bersoff, Henderson, and Siegel, 1980:29). Management must
control the procedures by which developers create new code, modify or delete existing code, and
share code with other programmers (Babich, 1986:84). This is accomplished by ensuring that the
software library, or repository of code and documentation, is secure and protected against

unauthorized access (Whitgift, 1991:181). Read access must be controlled to prevent unauthorized

2-10

disclosure, while write access must be controlled to prevent unauthorized change or deletion

. (Whitgift, 1991:181). At the same time, because the software repository is shared among the
members of the development team, some sort of shared access must be coordinated (Babich,
1986:68).

Although configuration control appears to divert or inhibit developers from doing their job,
this situation should not and need not occur. If properly implemented, configuration control is
sensitive to the context in which developers must operate; this procedure applies the right degree of
constraint to ensure that developers work in a responsible and disciplined way while contributing to
the objectives of the team (Whitgift, 1991:125). It should be noted that configuration control does
not just "go away" when production is completed and the contractor tumns the system over to the
government for operational use; such control must extend as the govemnment continues to makes its
own changes to the delivered item(s) (Dean, 1979:25). Therefore, software configuration control
enables a manager to ensure that his or her software system consists only of authorized software
and the authorized changes.

Software Configuration Auditing. This procedure provides mechanisms for determining
the degree to which a particular software configuration mirrors the software configuration
represented in baseline and requirements documentation, and for establishing or sanctioning
baselines (Bersoff, 1980:386). The two most prevalent or recognized types of configuration audits
are the "functional” and "physical” varieties, which occur at the conclusion of software
development. The functional configuration audit validates the performance of one or more CSCls
in satisfying the user requirements, whereas the physical configuration audit verifics that the
software implementation is accurately and adequately reflected in its documentation (Berlack,
1992:176,178). Once both audits are successfully completed, the product baseline is formally
established. However, the SCM function of auditing must be conducted throughout the software
development life cycle. Not only should the final developmental configuration be audited, so also

should each configuration leading to the establishment of the functional, allocated, design, and

2-11

operational baselines (Bersoff, Henderson, and Siegel, 1980:31). Regardless of the particular time
frame in the life cycle, configuration auditing serves two purposes: configuration verification and
configuration validation (Bersoff, 1980:386). Configuration auditing verifies that identified
software configurations are what they were intended to be, and it validates that they fulfill the
functions corresponding to the respective milestone points (Bersoff, Henderson, and Siegel,
1980:232). In this manner, as software life cycle products are audited and baselines are
established, requirements can be traced from baseline to baseline (Bersoff, 1980:386). Quite
simply, the success or failure of software configuration auditing reflects the integrity of the
system's software.

Software Configuration Status Accounting. The activities involved with the
fundamental SCM activities of configuration identification, configuration control and configuration
auditing result in a massive amount of data for management to assimilate (Bersoff, Henderson, and
Siegel, 1980:285). This is even more the case when one considers that software changes almost
continuously. Rarely will a software baseline exist that does not have additional changes. The
goal of software configuration status accounting is to create and maintain records of all software
baselines, the SCIs associated with each baseline, and the corresponding changes (Bersoff and
Davis, 1991:107). Status accounting provides management with the tools by which such software
information can be organized to produce a useful and coherent system picture (Bersoff, Henderson,
and Siegel, 1980:285). According to Berlack, configuration status accounting ". . . keeps track of
the current configuration identification documents, the current configuration of the delivered
software, the status of changes being reviewed, and the status of the implementation of approved
changes" (Berlack, 1992:153). Status accounting consists of three processes: recording, storing,
and reporting (Bersoff, Henderson, and Siegel, 1980:291).

Recording. The purpose of recording is to capture all events and information of
significance concerning the development of the software code and documentation (Bersoff,

Henderson, and Siegel, 1980:295). Examples of the type of information which should be recorded

2-12

include development status of configuration items, review status of change requests, item versions
and implementation dates associated with any software change activity, differences between
multiple versions of an item, number of faults detected in each item and cause of problem reports
(Whitgift, 1991:152). As with all other SCM activities, the magnitude of the recording function
will depend upon the scope and complexity of the system undergoing development (Bersoff,
Henderson, and Siegel, 1980:294).

Storing. The role of storing is to provide a complete and organized data base of
all information recorded and of all software documentation and code developed. The platform or
foundation upon which the storing process is based is the software development file (SDF), which
evolved from the unit development folder (UDF) (Berlack, 1992:154). According to Ingrassia, the
UDFis ". .. astructured mechanism for organizing and collecting software development products
(requirements, design, code, test plans/data) as they become available" (Ingrassia, 1987:405).
Whereas the UDF has addressed data collection at the unit level (i.e., CSU level), the SDF
compiles or organizes these abstractions of data into component level (i.e., CSC level) and end item
level (i.e., CSClI level) files. In a data base or automated environment, a file system with
corresponding directory structure is established, enabling the software sysfem to be broken down
into subsystems, subsystems into programs, programs into components and components into units.
Using this approach, at any point in time data can be stored at the appropriate system abstraction
level, new data can be quickly imported and data can be exported to build a report. This also
facilitates the regeneration, if necessary, of any or all baselines and the changes to any particular
baseline (Bersoff and Davis, 1991:107).

Reportir::. The purpose of reporting is to make both software and its
developmental histbry visible to all project participants (Whitgift, 1991:151). This is
accomplished by preparing and distributing reports to project personnel whiclr contain necessary
day-to-day information conceming the status of the system software development (Berlack,

1992:154). According to Bersoff, Henderson, and Siegel, "These reports, based on the data

2-13

recorded and stored, will be both scheduled (by the SCM Plan) and ad hoc (in response to inquiries
* by project participants)” (Bersoff, Henderson, and Siegel, 1980:303). Examples of scheduled
reports include CCB meeting minutes, baseline status reports, executive summaries of SCM

activities, change request status reports, fault report status, and baseline release notes (Bersoff,

Henderson, and Siegel, 1980:299). Each of these reports provides management and/or developers
with information at established points in time during the software development life cycle.
However, in order to satisfy the myriad of SCM-related questions which project participants pose
on a daily basis, the status accounting system must respond rapidly to a variety of queries that may
include:

e What is the status of an item?

« Has a change request been approved or rejected by the CCB?

e Which version of an item implements an approved change request?

e What is different about a new version of a system?

o How many faults are detected each month and how many are fixed?

e What is the cause of fault reports (Whitgift, 1991:151-152)?

The completeness of the data recorded, and the thoroughness and discipline used in storing and
cataloging the data, will determine how successfully the status accounting system can generate ad
hoc reports to satisfy such queries (Bersoff, Henderson, and Siegel, 1980:302).

Software configuration status accounting permits management to trace the history of a
software system's life cycle, re-create any past software configuration, and validate any software
baseline against a level of documentation (Bersoff, Henderson, and Siegel, 1980:29). It can also
provide management with useful statistics upon which to base future costing and scheduling
decisions (Berlack, 1992:169). As such, status accounting truly is the capstone to the other
fundamental SCM activities, providing a monitoring system t® keep the established system of
documentation and change control up to date, and it assures that the software being developed will

be maintainable (Berlack, 1992:173). However, Berlack pointed out that a status accounting

2-14

system is only as good as the information within it and its design requires thought and planning to

ensure that the data are available and can be updated with available resources (Berlack, 1992:173).

Software Configuration Management in DoD Software Development

Since this research effort focused on DoD software development programs, various
standards were reviewed to understand how the DoD currently addresses SCM. These included
DoD-STD-2167A, Defense System Software Development, DoD-STD-2168, Defense System
Software Quality Program, and MIL-STD-973, Configuration Management. The combination of
these standards provides the means for establishing, evaluating, and maintaining quality in
software and associated documentation, and are applicable throughout the system life cycle (DoD-
STD-2167A, 1988:iii). Additionally, to establish a comparison, we also reviewed IEEE-STD-
1042, Guide to Software Configuration Management, and IEEE-STD-828, Software
Configuration Management Plans. Although the DcD is planning to supersede DoD-STD-2167A
with DoD-STD-498, Software Development and Documentation, this replacement was still in
draft form at the time of this writing. Thus, the current approved standard govemed. The
following paragraphs present a compilation of the SCM activities from the referenced standards
that are applicable to all or specific phases of the software system life cycle.

Software Configuration Management Requirements. MIL-STD-973 specifies the
configuration management requirements, both for hardware and software, that may be applied to a
DoD development program. Only the software requirements were addressed for this research
effort. This particular standard was intended to be the only DoD document for configuration
management requirements, superseding previous configuration management standards, such as
MIL-STDs-480, -481, -482, and -483 (MIL-STD-973, 1992:120). The general SCM
requirements, as identified in MIL-STD-973, address planning, the four elements of SCM, and
data transfer, distribution, and access. Specific requirements for each of the four elements of SCM

are identified and discussed in the following paragraphs.

2-15

Establish and Document Policies. MIL-STD-973 first identifies the
requirements by which a contractor will establish and implement configuration management
policies and administration, then specific guidelines are given which the contractor will follow in
creating new configuration management procedures, or restructuring existing ones. The end
product of this effort is a configuration management (CM) plan whose content and format is
governed by the Data Item Description (DID) DI-CMAN-80858A, Contractor’s Configuration
Management Plan. The contractor will plan how to meet the data storage, distribution, access,
security, maintenance, and processing requirements of the contract (MIL-STD-973, 1992:19).
These stipulations may require traditional hard copies of data or an interactive digital data
processing system, such as Computer-aided Acquisition and Logistic Support (CALS). The plans
for conducting SCM are included as part of this overall CM plan. Alternatively, as discussed later,
they can be included as part of DID DI-MCCR-80030A, Software Development Plan, under DoD-
STD-2167A. |

Identification. For configuration identification, the contractor is required to
"incrementally establish and maintain a definitive basis for control and status accounting for a
configuration item (CI) throughout its life cycle” (MIL-STD-973, 1992:25). Generally, the
contractor will meet this requirement by identifying the SCIs and their configuration
documentation; establishing a developmental configuration; establishing functional, allocated, and
product baselines for each SCI; defining, documenting, and managing interfaces; establishing an
engineering release system for configuration documentation and source code; and assigning
identifiers to each SCI, its component parts, and documentation.

Control. As part of configuration control, MIL-STD-973 requires the contractor
to regulate changes to all SCIs. This is accomplished by systematically documenting and
evaluating proposed changes. Documenting includes describing, justifying, and coordinating a
proposed change. Evaluation involves determining the impact of the proposed change on the rest

of the system and the approval or disapproval of the proposed change. In this section of MIL-

2-16

STD-973 the requirements for the classification of various engineering changes are discussed in
detail, including the speci.ﬁc DoD forms and procedures for each change. These change
classifications include Engineering Change Proposals, Request for Deviations, Request for
Waivers, Specification Change Notices, and Notices of Revision.

Auditing. MIL-STD-973 specifies two configuration audits, the Functional
Configuration Audit (FCA) and the Physical Configuration Audit (PCA). The requirements,
procedures, and responsibilities are delineated and discussed. For each audit, the contractor is
required to develop an audit plan and agenda, and to provide all the necessary information, -
personnel, and support to conduct each audit.

Status Accounting. In order to perform configuration status accounting, MIL-
STD-973 requires the contractor to establish an information management system, as defined in
Appendix H of the standard. As part of this configuration status accounting system, the contractor
will maintain a complete historical record of all required information. Appendix I of MIL-STD-
973 provides guidance for identifying and defining data elements for use in status accounting
records and reports. The contractor is required to analyze status accounting data to detect trends in
reported problems and to verify that corrective actions have resolved these adverse trends (MIL-
STD-973, 1992:64).

MIL-STD-973 applies to all the acquisition phases: Demonstration and Validation,
Engineering and Manufacturing Development, Production and Deployment, and Operation and
Support. Although the standard does not specifically address acquisition phases in the
requirements sections, its final section presents methods for tailoring MIL-STD-973 to the
requirements of specific acquisition phases. In contrast, the SCM requirements in DoD-STD-
2167A depend on the software development activities that occur during the acquisition phases.

Software Life Cycle. The system life cycle is partitioned into acquisition phases, each
defining a stage of the development of the system. For instance, DoD-STD-2167A describes the

development of software systems as activities within these acquisition phases. While software-

2-17

unique activities normally occur during the phase of Engineering and Manufacturing Development

(EMD), these same activities can also occur during Demonstration and Validation, when

developing a prototype, or during Production and Deployment or Operations and Support, when

modifications are required. For ease of discussion, the software development activities are

presented in line with the overview of the DoD software development life cycle shown in

Figure 2-5. Although it appears DoD-STD-2167A specifies the use of the Waterfall method for

software development, any development method can in fact be used, depending upon the contract

requirements (DoD-STD-2167A, 1988:iii/iv). Thus, because software activities are not regimented

to occur only during EMD, they can also occur during any of the phases shown in Figure 2-5.

ACQUISITION
PHASE

ACTIVITY

SOFTWARE
ACTIVITY

SOFTWARE
REVIEWS

AUDITS

SOFTWARE
BASELINES

PRODUCTION
CONCEPT DEMO!\BTRA‘!‘XONI
ENGINEERING AND MANUFACTURING DEVE
ANDYV,
EXPLORATION ALIDATION DEPLOYMENT
SYSTEM SYSTEM coMPUTE soFTwAre| SYSTEM or | PRODUCTION
REQUREMENTS = -0 DEVELOPMENT INTEGRATION | " | AND
ANALYSIS ' AND TESTING DEPLOYMENT]
' SOFTWARE e
: REQUIRE-
. MENTS PRELIM- .
' ANALYSIS| INARY
‘) DESIGN | DETARED| .] :
. , DESIGN csC
AND CSU
' ' ' TESTING | INTEGRAT-
: ' :) TIONAND [o
NI
: : | : | 2 e
. . . ‘ . FUNCTIONAL |
1] 1 1 1) L] N cmﬂc
N\ JANERVAN AUDITC
SYSTEM SYSTEM sW PRELIM CRITICAL A
RQMTS DESIGN SPEC DESIGN DESIGN TEST PHYSICAL
REVIEW REVIEW REVIEW REVIEW REVIEW READINESS CONFIG
(SRR) (SDR) (SSR) (PDR) (CDR) REVIEW AUDIT
(TRR) (PCA)
FUNCTIONAL ALLOCATED DEVELOPMENTAL CONFIGURATION PRODUCT
BASELINE BASELINE BASELINE

Figure 2-5. Computer Software Development Cycle (Berlack, 1992:47)

2-18

In each of these phases, specific SCM activities must occur. DoD-STD-2167A specifies the SCM
requirements by the software development activities shown above. The requirements specified by
both DoD-STD-2167A and DoD-STD-2168 are presented in the following paragraphs under the
software development activities in which they occur.

System Requirements Analysis and Design. During these activities, the
contractor develops a plan which specifies the SCM organization, procedures, and schedules. The
govemment can receive a copy of the contractor's SCM plan either by requiring it as part of a
Software Development Plan (SDP) or as part of a system Configuration Management Plan (DoD-
STD-973, 1992:18-19; DI-MCCR-80030A, 1988: 1-2). In conjunction with either of these
options, the contractor develops a Software Quality Program Plan (SQPP), which documents the
contractor’'s procedures for implementing a software quality program (DoD-STD-2168, 1988:2).
A preliminary set of system requirements is then defined and documented in a preliminary System
Specification. Status accounting records and stores the preliminary versions of the SDP, SQPP,
and System Specification, thus beginning the developmental history of the program. A System
Requirements Review is conducted to review, evaluate, and establish the formal requirements for
the system, some of which will later filter down to the software. The product of this review is a
preliminary System Specification which, upon Government acceptance, is placed under contractor
configuration control. The system is then partitioned into two types of Configuration Items (Cls),
Hardware Configuration Items (HWCIs) and Computer Software Configuration Items (CSCls),
and all are labeled. The Air Force Materiel Command uses Computer Program Identification
Numbers (CPINs) to identify the CSCls in its systems; however, there is no standard DoD
software identifier system (Ferens, 1993). The system requirements are allocated among the
HW(CIs, CSCIs, and manual operations, and then documented in a System/Segment Design
Document (DoD-STD-2167A, 1988:19). Also, during these activities, the configuration baselines

(i.e., functional, allocated, and product) and the associated documentation are identified and

2-19

labeled. Next, the contractor defines preliminary sets of software and interface requirements and
documents them in a preliminary Software Requirements Specification (SRS) and a preliminary
Interface Requirements Specification (IRS), respectively, for each CSCI, after which they are
placed under contractor configuration control. The Functional Baseline (first of a series) is
established after the successful completion of a System Design Review (SDR); it represents both
the system's approved and documented operational characteristics and its design constraints (MIL-
STD-973, 1992:12). The System Specification, System/Segment Design Document, SDP and
SQPP are all finalized. Once accepted by the govemment, they are placed under government
configuration control. After the successful completion of SDR, software design and development
begins, involving software requirements analysis, preliminary design, detailed design, coding and
unit testing, component integration and testing, and CSCI level testing (Berlack, 1992:52).

Software Requirements Analysis. During this activity, the preliminary software
and interface requirements are formalized in a finalized SRS and IRS. These two documents
receive govemment approval or disapproval at a Software Specification Review (SSR). The
purpose of this review is to ensure that all the requirements specified for software during the
System Design activity have actually been allocated to a CSCI and that specified and derived
requirements are adequately defined in the IRS and SRS. Upon successful completion of this
review and acceptance of the SRS and IRS, the Allocated Baseline is established and these
documents are placed under government configuration control.

Preliminary Design. The Preliminary Design activity signifies the establishment
of the Developmental Conﬁguraﬁon. This is a contractor-controlled internal baseline which
describes the evolving configuration of the software being developed. The preliminary design for
each CSCl is developed, requirements are allocated from the SRS and the IRS to the Computer
Software Components (CSCs) of each CSCI, and the design requirements are established for each
CSC (DoD-STD-2167A, 1988:23). This information is captured in a preliminary Software Design

Document (SDD). In addition, the interface designs for each CSCI are developed and documented

2-20

in a preliminary Interface Design Document (IDD) for each CSCI. Plans and test requirements for
integration and testing each CSC are developed and documented in a Sofiware Test Plan (STP) for
each CSCI. These three documents must be based on, and either directly traceable back to or
derived from, the requirements specified in the SRS and IRS. Software Development Files (SDFs)
are established for all CSCIs and CSCs. The contractor may choose either to logically group
CSCs into single SDFs or to establish a separate SDF for each CSC (DoD-STD-2167A, 1988:14).
SCM will support one or more Preliminary Design Reviews (PDRs) to evaluate the initial design
and test plan for each CSCI. After the contractor receives govemment approval for the
preliminary design and documentation, the contractor's Developmental Configuraticn for each
CSCl is established. The SDD, IDD, STP, and CSC test requirements are incorporated into the
Developmental Configuration under contractor configuration control. '

Detailed Design. After the initial designs are established, the Detailed Design
activity begins. In this activity, a more detailed and final design is developed for each CSCI.
Requirements are allocated from the CSCs to the Computer Software Units (CSUs) of each CSCI
and design requirements are established for each CSU (DoD-STD-2167A, 1988:25). The SDD
and the IDD are updated to include the detailed design information. In this phase, SDFs arc
established for each CSU, or logical grouping of CSUs, similar to the SDFs for the CSCs. Test
requirements, responsibilities, and test cases for each CSC and CSU are recorded in the respective
software development files. Test cases are documented in a Software Test Description (STD) for
each CSCI. SCM will support a Critical Design Review (CDR) for one or more CSCls to revicw
the design and test documents and to evaluate the proposed detailed design for each CSCI. Asin
the PDR, once approval is received from the Government, the detailed SDD, IDD and STD for
each CSCI are incorporated into the developmental configuration, then placed under contractor
configuration control.

Coding and CSU Testing. In the Coding and CSU Testing activity that follows

CDR, SCM places the updated SDD and software source code listings for each successfully tested

2-21

CSU under contractor configuration control, as it is incorporated into the Developmental
Configuration. Internal design and code walkthroughs are performed to review design and coding
efforts for correctness and compliance to the contractor’s internal coding standards. It is critical
that status accounting maintains a record of all action taken for each walkthrough in the SDFs
(Berlack, 1992: 56), which are updated to include source code, test procedures and reports, and
design documentation.

CSC Integration and Testing. This integration and testing activity involves
SCM functions similar to Coding and CSU Testing, the difference is that this activity involves
integrating the CSUs into CSCs. Testing and evaluation are performed at the CSC level. The
SDD is updated, and the source code listings and test results are added to the respective SDFs.
SCM supports a Test Readiness Review (TRR) by prc;viding CSC test reports and the latest
versions of the design documents and source code listings for each CSC. As each test case is
identified in the STD, formal test procedures are developed and documented in it. The updated
STD and source code for each successfully tested CSC are incorporated into the Developmental
Configuration, then placed under contractor configuration control (DoD-STD-2167A, 1988: 29).

CSCI Testing. In this activity of testing, the CSCs aie integrated into their
respective CSCls and tested, using the formal procedures in the appropriate STD. SCM is
responsible for identifying the exact version of the software for each CSCI in a Version
Description Document (VDD). SCM will support a Functional Configuration Audit (FCA) and a
Physical Configuration Audit (PCA) at the end of this activity. According to MIL-STD-973, this
support involves audit preparation, assistance during the audit and post audit actions (e.g.,
publishing audit minutes and recording audit results in a configuration status accounting system).
These audits are intended to verify that the software meets the specified performance requirements
and that the software accuratcly reflects its documentation or revised documentation reflects its
software. When the FCA and PCA are successfully completed, the Developmental Configuration

for each CSCI becomes the Product Baseline, at which time the CSCI configuration is under

2-22

government control. The final SDD, IDD and source code listings become the Software Product
Specification (SPS) for each CSCI. Once the SPS, VDD and users manuals are evaluated and
approved, they are placed under government configuration control. Depending on the system,
SCM may support System Integration and Testing when the system hardware is integrated with the
CSCI(s). With govemment approval, the contractor will prepare any necessary changes to
baselined documentation and source code resulting from System Integration and Testing.

Production and Deployment. During the Production and Deployment phase,
SCM supports software maintenance resulting from problem/change reports. Proper configuration
control and status accounting must be performed to ensure that only approved changes are made to
the affected baselines, and that they are properly recorded. SCM also supports the development of
ent cements, modifications, or block changes (group of modifications) similar to the previous life
cycle phases.

In conclusion, MIL-STD-973 addresses many SCM functions related to the four
fundamental SCM elements which do not fit precisely into any one or two software development
activities. In fact, according to the tailoring guide for MIL-STD-973, most of the requirements
apply to all acquisition phases and software development activities (MIL-STD-973, 1992:102-
106). MIL-STD-973 primarily deals with the details of "what" and "how" configuration
management is to be accomplished, whereas DoD-STD-2167A specifies the "what" and "when" for
SCM. DoD-STD-2168 parallels MIL-STD-973 in the activities of configuration control and
auditing by specifying internal contractor control and audits to be performed on the contractor's
own SCM efforts. The comparison and intertwining of the standards proved to be a difficult task
in that many of the standards referenced by DoD-STD-2167A had been superseded by MIL-STD-
973, and any direct correlation was masked. DoD-STD-2167A and MIL-STD-973 contain some
overlap since the intent of MIL-STD-973 was to collate all CM, including SCM, under one

standard; however, DoD-STD-2167A has not yet been replaced.

2-23

Models used in Developing SCM Tools

This section presents the models upon which most current SCM automated tools are based.
Specifically, the Checkout/Checkin, Composition, Long Transac~ .n, and Change Set models are
addressed. According to Feiler, these ". . . four models have been derived from examining a
number of commercial systems providing CM functionality, be it CM tools, multi-user CASE
tools, or environment frameworks with CM capabilities” (Feiler, 1991:45). The four models can
be differentiated by the manner in which each defines a working context for changing the product,
maintaining the product’s version history, supporting and managing concurrent modifications, and
managing and propagating logical changes (Feiler, 1991:2). In m, these are discussed for each
model.

Checkout/Checkin Model. SCM systems based on this type of model consist of a
repository tool and a build tool (Feiler, 1991:5). The repository tool provides management with the
mechanism to control the creation of new versions of files and then to store the multiple resultant
versions (Feiler, 1991:5). Given a description of the components that make up a product, the build
tool provides for automatic generation of derived files such as object code and linked executables
(Feiler, 1991:5). Using these two tools, the Checkout/Checkin model targets two key features:
maintaining version history of individual files and controlling concurrent modification of files
(Feiler, 1991:6).

Definition of Working Context. The developer does not modify components in
the repository. As the model's name implies, a component must first be checked out, or copied, to
a directory in the file system. Therefore, the file system constitutes the general work area where
components can be viewed and/or modified depending upon the access rights applied (Feiler,
1991:10); SCM systems based on the Checkout/Checkin model do not control access to
components outside the repository. Instead, management must establish work areas for its
developers by creating sub directories with appropriate access rights within the file system (Feiler,

1991:10).

2-24

Maintenance of Version History. The repository’s evolving system files are
stored in a directory hierarchy that mirrors that system's actual structure. The repository tool
ensures that when files are checked out of the repository, modified, and then checked back, they are
stored as a new version (Feiler, 1991:5). The Checkout/Checkin model's file versioning capability
permits the creation of sequential revisions, temporary or developmental branching, and permanent
variant branching of files that need historical tracking. Additionally, as Figure 2-6 shows, two

versions from different branches can be merged into one new version in a single branch.

Branches
1.0 e A N\
\q n
1.1
Revisions 2.1 2.1.1
1.2 Revisions
22 [

Figure 2-6. File Versioning in the Checkout/Checkin Model (Feiler, 1991:7)

Control of Concurrent Changes. Incorporating a software change routinely
involves modifying more than just one file or document and is often accomplished concurrently
with other changes. At any given time, multiple programmers may need to modify a given file for
various reasons. The Checkout/Checkin model controls this concurrent change activity to maintain
the integrity of each component and system configuration. The retrieval of files can be controlled
so that only one person at a time can check out a file from the repository. Alternatively, file
versions can be checked-out as the initial version of a new branch so that, when all file versions
predicated on the same initial file version have been checked b‘ack into the repository, they are

merged together into one file version (Feiler, 1991:9).

2-25

Management and Propagation of Change. A logical change to the overall
system software often requires several components to be modified together. Unfortunately, even
though all the necessary components can be checked out to one work area, modified, and checked
back into the repository as new component versions, the repository has no way of automatically
knowing that these components involve logically related changes (Feiler, 1991:11). Component
versions can only be identified as part of a logical change through manual means. The label for
each applicable component can reference the goveming logical change, or comments can be
included within each of the applicable component files indicating the logical change that drove the
modification (Feuer, 1991:11). Because the Checkout/Checkin model is predicated on the
versioning of individual files, rather than variant configurations of files, propagation of changes (to
other system variants) has no real meaning in this model.

Composition Model. Whereas the Checkout/Checkin model focuses on supporting the
evolution of components, the Composition model focuses on supporting the creation and evolution
of system configurations (Feiler, 1991:15). A configuration consists of a system model and
version selection rules. The system model is a listing of all the components that make up that
system. The version selection rules are the necessary search path or predicate logic options used to
indicate which version of each system component should be chosen to build a particular
configuration and to which location{s) each component should be checked out (Feiler, 1991:15).

Definition of Working Context. In the Composition model, a configuration
serves as the working context. When developers need to modify the system software they cither
access an existing system configuration in the repository, or they define and create a new
configuration by choosing the combination of appropriate selection rules and system model that
defines the desired configuration (Feiler, 1991:18). The selection options can point to components
in other developers' work areas, system variants, and labeled branches representing particular
development paths (Feiler, 1991:17). The applicable component versions which comprise that

configuration are then automatically made available in (i.e. copied to) the file system.

2-26

Maintenance of Version History. Despite emphasizing configurations, the
Composition model still evolves a system by versioning individual components (Feiler, 1991:19).
The system models and selection rules that comprise configurations are treated as components and
are stored as versions in the repository. Each combination of a system model and selection rule is
then recognized as a configuration and given a name that reflects the configuration's version history
(Feiler, 1991:19). Thus, the version history of system models, selection rules, and configurations
are all maintained together in the repository.

Control of Concurrent Changes. As with the Checkout/Checkin model, the
Composition model relies on locking and branching mechanisms for concurrency control. The use
of appropriate access rights can prevent developers from accessing and changing components in
each other's work areas (Feiler, 1991:20). At the same time, developers can cooperate and share
components. They can do this by either sharing a work area or including more than one work arca
in the selection rules, thereby providing availability for the same component(s) in more than one
work area (Feiler, 1991:20).

Management and Propagation of Change. Because this model forces developers
to use configurations as the working context, logical changes can be identified and managed
(Feiler, 1991:21). When a change request is implemented in a particular configuration, all the
component versions associated with the logical change are easily identified and retrieved by
accessing the version selection rules for that configuration. Unfortunately, while logical changes
can be managed they cannot be included in other configurations (Feiler, 1991:21).

Long Transaction Model. SCM systems based on the Long Transaction model focus on
supporting the evolution of a whole system as a series of changes made by a team of developers.
Changes are performed as transactions having durations of hours, days, or months. Changes either
represent the work of one developer or, through a series of nested transactions, the work of a group
of developers. Systems based on this model not only manage the repository; they also support the

developers while they modify the software within their work areas (Feiler, 1991:23-24).

2-27

Definition of Working Context. With SCM tools based on the Long Transaction
model, the developer's work area is represented by the workspace concept. Wherein the workspace
provides local memory and replaces the use of the file system as the work area (Feiler, 1991:24).

A workspace can originate from either the repository or an enclosing workspace (see Figure 2-7).
Once originated, a workspace will exist indefinitely as both a working configuration and a series of
preserved configurations (Feiler, 1991:25). When a change transaction is finally committed and a
new configuration version is created in either the repository or enclosing workspace, the subject

workspace can be deleted or used for yet further development (Feiler, 1991:26).

Repository

Release |

Release 2

Originate Cormenit
Version | -1 Preserved
Version 2 Preserved
_ l
v 3 1 Working
Workspace "

Originate from Enclosing (or Parent) Workspace

v | [t ¥

Version | 1 @ @
]
Version 2 @ @ @ Working Version 2

Working

Workspace Workspace

Figure 2-7. Relationship between Repository and Workspace (Feiler, 1991:25)

2-28

Figure 2-7 demonstrates the concepts involved in originating a workspace from a particular
repository release, originating a workspace from a parent workspace, preserving local
configurations within the workspace, then finally, committing a workspace configuration version
back into either an enclosing workspace or the repository.

Maintenance of Version History. The configuration versions within the
repository represent the version history of the entire system software. These bounded versions
result when change transactions from offspring workspaces are committed to the repository, while
at the same time, developmental version history is maintained within the offsprir;g workspaces.
The workspace concept provides for local version history in that changes can be preserved as a
series of immutable configurations within the workspace before they are sufficiently ready to be
committed as a new configuration version to the repository or enclosing workspace (Feiler,
1991:24). These preserved configurations also provide checkpoints to which developers can revert.

Control of Concurrent Changes. This model provides a myriad of ways in
which concurrent changes can be controlled within one workspace or between two or more
workspaces. Concurrency within one workspace can be managed by limiting access to the
workspace and/or the preserved and working versions within the workspace (Feiler, 1991:30).
Concurrency between workspaces can be managed by controlling access to individual components
within workspace versions, limiting the number of offspring workspaces to one, and allowing only
one workspace per subsystem (Feiler, 1991:30). Concurrency between sibling workspaces can
also be managed by allowing the first workspace finished to successfully commit a change, forcing
concurrent workspaces to commit their changes later, identifying any conflicts resulting from
merging these changes (Feiler, 1991:31).

Management and Propagation of Change. While this model provides no
schemes for managing groups of logically related changes, it does make the propagation of change

possible. Such changes are propagated whenever a transaction is committed and the repository or

2-29

enclosing workspace is updated with a new configuration, and whenever a developer originates or
updates his or her workspace with the most current configuration version (Feiler, 1991:34).
Change Set Model. Unlike the first three models which focused on managing the

versioning of components and/or configurations, the Change Set model focuses on managing
logical changes to system configurations. In this model, each configuration consists of a baseline
and a set of change sets. In the context of a component, a change set is the set of differences
between the two component versions, whereas in the context of a configuration, a change set is the
collection of differences of those components that have been modified between the two
configuration versions. Figure 2-8 illustrates this change set concept.

Definition of Working Context. SCM systems based on the Change Set model

normally rely on the Checkout/Checkin model in defining a working context. A change set is

A B C Configuration
R1

AAl P ~ C1 Change Set= {AA1,AC1]
S~
1.1 11 Lif " —p» | R2 |

Figure 2-8. Component and Configuration Change Sets (Feiler, 1991:38)

created as part of the working context, then modifications preserved thrugh component check-in
are logged as part of the change set (Feiler, 1991:42).

Maintenance of Version History. The first three models maintained the version
history of each configuration and component by adding each new version to those already stored in
the repository. The resultant version history was reflected in the version graph. SCM systems
based on the Change Set model maintain and track the change sets applied against the baseline
configuration and its constituent components (Feiler, 1991:40). Therefore, each configuration
version can be derived from the baseline configuration and the applicable change set(s), and each

component version can be derived from the baseline component and the applicable change set(s).

2-30

Control of Concurrent Changes. The Change Set model does not provide any
locking mechanisms to control concurrency of changes. Instead, SCM systems based on this model
must also support, and thus rely upon, the Checkout/Checkin model for concurrency control
(Feiler, 1991:43).

Management and Propagation of Change. This mode! provides management of
logical changes in that each change set serves as a record that persists after the activity creating the
change has been completed (Feiler, 1991:37). Changes are propagated to other configurations by
including the respective change set (Feiler, 1991:37).

Model Summary. Typically, an SCM system will focus on one of the four identified
models as its primary model, possibly complementing it with a second model (Feiler, 1991:45).
Regardless of which model(s) an SCM system supports, it must be capable of being integrated with
other CASE tools and environment frameworks employed for a given project (Feiler, 1991:46).
The tools must be able to pass data back and forth and also be able to communicate with each
other if developers are to use the various tools and frameworks effectively. Because no current
SCM tool is capable of addressing every SCM challenge, tools and technologies remain popular
subjects of research (Whitgift, 1991:155). According to Feiler, ". . . there is a need for a unified
CM model that provides a framework for configuration management support. This unified model
should be a multi-paradigm model that supports several CM concepts cooperating in harmony”
(Feiler, 1991:47),

Summary Of Review

Although SCM has finally gained the recognition it deserves and is considered in the same
light of importance as hardware CM, it will continue to be a topic for debate among software
managers who are looking for more concrete and efficient ways to manage and control software
systems. There is a definite need for better tools and procedures to perform SCM. However, there

is also a need for software managers to better understand their particular SCM requirements and

2-31

how to effectively implement the available tools 1o meet these requirements. The degree to which
each fundamental SCM element is stressed and implemented depends on the individual software
system. As Dean states, "The amount and type of detailed information required for your program
is your decision; the means of tracking it will be determined by your program, but the tracking
must be done” (Dean, 1979:26). Today, there is a myriad of software management tools from
which to choose; their presence in any software development environment is commonplace. It is
essential that Air Force managers become intimate with their capabilities, or at the very least, be
acquainted with their use. This review has presented a compilation of many involved topics that
require understanding before any evaluation of SCM tools can begin. The information uncovered
during this research and the methodology discussed in the following chapter made it possible to

develop an evaluation mechanism for SCM tools.

2-32

1. Methodology

Overview

This chapter addresses the methods and techniques used to answer the research questions
identified in Chapter 1. First, we discuss the development of the evaluation mechanism, and
specifically, how, and from where, DoD SCM requirements were identified. These are the
requirements against which each SCM tool was measured. This section also includes a description
of the method used to examine and define the functionality of SCM tools in general. For purposes
of this study, these requirements and functionality were arranged in a matrix format which became
part of the evaluation mechanism. Second, the population of SCM tools is described and followed
by the strategy used in selecting a sample from this popuiation. The process used to gather data on
each tool in the sample is discussed; specifically, what type of data was used and how it was
collected. Finally, the chapter ends with the methodology for using the evaluation mechanism in

the analysis of each tool in the sample.

Development of the Evaluation Mechanism

As stated in Chapter 1, this research effort focused on developing an evaluation
mechanism for consistently and systematically analyzing SCM tools which could be used in Air
Force software systems development. Specific criteria were nceded in order to examine and
evaluate each tool, consisting of two sets: first, existing SCM requirements and second, general
SCM 100l functionality, as discussed in Chapter 2. Each of these criteria sets is discussed further
in the following sections. Using this evaluation mechanism, each tool in our sample was assessed
to determine what functionality it contained, and whether or not it met each respective requirement.

SCM Requirements Analysis. The SCM requirements are primarily based on DoD-
STD-2167A, Defense System Software Development, and MIL-STD-973, Configuration

Management. In addition, industry standards were examined, which included: IEEE 828-90,

3-1

Standard for Software Configuration Management, and IEEE 1042-87, Guide to Software
Configuration Management. We analyzed both DoD-STD-2167A and MIL-STD-973 to
determine all the SCM requirements that currently can be levied on new DoD software
development programs. This list evolved into the DoD SCM requirements for the evaluation
mechanism. The industry standards were also analyzed to obtain a standard requirements list,
which was compared to the DoD requirements list in order to identify any unique differences and to
increase our understanding of each requirement. An explanation was developed to clarify and
justify each requirement. Justification included a reference to the applicable standard(s) specifying
each requirement. These requirements apply to a wide range of software development programs
and, as the standards state, are meant to be tailored. Requirements that do not apply or are in
excess of the program's needs should be elix;linated, or tailored, from the requirements list. In order
to make the evaluation mechanism applicable to all software development programs, all
requirements identified during the analysis of the standards were included in the evaluation
mechanism. Where no weighting system was used, each requirement was considered equally
important to the SCM effort. In use, the Air Force manager may assign weights to each
requirement, depending upon the needs of the particular software development effort.

SCM Tool Fundamentals Analysis. As discussed in Chapter 2, the majority of SCM
tools available today utilize four fundamental models, either singularly or in combination, and
to varying degrees. Each model was examined to define its specific fundamentals. Also,
prominent families of SCM tools were analyzed to identify additional functions or capabilities.
This information became the "fundamental functions" used in the evaluation mechanism for
this research. In addition to this list, an explanation was developed to provide a better
understanding of each fundamental function. Like the SCM requirements, no evaluation
weights were applied to these fundamental functions. Rather, each function was considered
equally important. It is left up to the Air Force manager to apply weights defined by the

unique needs of their software development effort(s).

3-2

Constructing the Evaluation Mechanism. From the results of the analyses of SCM
and software development standards, and the fundamental SCM models and tool families, a
Requirements-Functionality matrix was developed. The rows of the matrix consist of the DoD
SCM requirements identified, while the colums of the matrix are comprised of the fundamental
functions. Figure 3-1 shows the general format of the matrix.

Tool Functionality

R - - Te)

T - T e
T - e

— e T RO B0
N e --——-c‘m'ﬁﬁ}z 5
=0

Requirement § X
Requirement 2 X
Requirement 3
Requireme

Requirement §

etc. I_)_(. X

Dol SCM Requiremeants

Figure 3-1. Requirements-Functionality Matrix Format

An "X" in a block indicates that the associated tool meets a specific requirement
while utilizing a particular functionality. For each tool, the rationale behind that respective
determination was discussed to justify how the tool satisfies the particular requirement. This
information, along with the Requirements-Functionality matrix and general tool information,

comprised the evaluation mechanism.

33

Tool Evaluation

One of the research objectives was to evaluate a sample of SCM tools using the evaluation
mechanism discussed and described :n the preceding sections. The scope of this research effort
was discussed briefly in Chapter 1. Because of the numerous available SCM tools, the number of .
tools assessed, using the evaluation mechanism had to be limited. To accomplish this, the
population of tools was first identified. From this population a sample of tools was selected .
Before beginning the evaluation, an understanding of the capabilities of each tool in the sample was
required. This involved gathering, studying, and understanding data specific to each tool in the
sample. Once the capabilities and functionality of each tool were understood, we applied the
evaluation mechanism and performed a requirements analysis. The individual steps in the tool
evaluation process are discussed in the following paragraphs.

Population of Interest. The population of SCM tools that served as the foundation of this
research effort was defined by the four criteria identified below.

1. Available Commercial-Off-The-Shelf (COTS). This term implies that the
population consisted of tools available to any organization or individual with the funds necessary to
purchase the tool. No program or system unique tools will be evaluated.

2. Tools currently used by the Air Force on delivered programs which have a
proven track record, whether good or bad, through actual use by Air Force organizations.

3. Tools used by defense contractors in the development of software for the Air
Force, ranging from major weapon systems software to management information system software,

4. Tools able to support the Ada programming language. Since the DoD has becn
mandated to use the Ada Higher Order Language, more and more software will be developed in
Ada. Therefore, to be valuable to an Air Force manager, an SCM tool must be able to
accommodate any Ada peculiarities.

Sampling Strategy. To ensure a thorough cross-section of the population, various '

Air Force program offices, defense contractors, previous research, and local vendors were

investigated to identify a candidate list of SCM tools from which to choose a sample. The
sample was eventually determined v those companies which elected to participate in the
research effort by providing data and other support. The tools for which sufficient data could
not be located were eliminated from consideration.

Data Gathering. Before gathering data on our tool sample, the specific data required
and the strategy needed to obtain this data were defined.

Identification. There were two basic types of data required for each tool in
the sample. First, general product descriptions were needed, which provided a general idea of
the capabilities of each tool. Second, in order to understand the functionality of each tool, we
required more detailed technical data was required, which was in the form of either support and
operator manuals, evaluation software provided by the vendors, or dialogue with tool experts.

Strategy. The first type of data required was obtained through product
vendors, in the form of sales brochures and popular magazine articles. More in-depth
technical information required investigating trade joumals, interfacing with the vendor's
engineering support, and fully exercising any demonstration disks we received from vendors.
For each tool in our sample, the data necessary to understand and identify its specific functions
was obtained.

Evaluation and Analysis. Once substantial data had been collected, we conducted an
evaluation of each tool. This included examining the data for each specific tool to determine
what specific DoD SCM requirements were met using the evaluation mechanism. All tools
were evaluated independently of one another. Rationale for each decision made in the matrix
was justified or explained during the analysis. Each tool in the sample was assessed to
determine its unique features in meeting each of the particular SCM requirements. No tool
was chosen as "the best" for two reasons: tools tagget different portions of the software
development life cycle, and it was not our intent in this research effort to specify a "best" tool.

The results of our evaluation and analysis are examined in Chapter 4.

3-5

Summary
The goal of this research effort was 1o provide a mechanism by which Air Force

managers can better understand SCM requirements, and thus be capable of determining which
of the various tools and technologies employed by contractors can best meet these SCM
requirements. This required a two stage methodology. First, using known DoD SCM
requirements and generally accepted tool functionality, develop a mechanism that can be used
to evaluate specific tools. Second, using the mechanism, systematically analyze and evaluate a
group of tools. The knowledge gained from this research can help Air Force managers initially
specify the necessary SCM requirements for their particular system, and then, competently
monitor the contractor’s performance to these requirements. The efforts involved in
developing the evaluation mechanism, analyzing the selected sample of SCM tools, and

identifying the difficulties encountered in the process are all discussed in the next chapter.

IV. Analysis

Overview

This chapter presents an analysis of the data and other information obtained in support of
this research effort. Specifically, we will address both the effort involved in developing the
software configuration management tool evaluation mechanism, and that involved in actually using
the mechanism to assess several commercial-off-the-shelf tools. In several instances, we have

attached an appendix of specific data to support our analysis.

Evaluation Mechanism

The brunt of the effort in developing the SCM Tool Evaluation Mechanism lay in
constructing the SCM Requirements-Functionality Matrix. This was of particular importance
because the matrix depended upon our abilities to accurately compile a list or set of DoD
requirements addressing SCM, and then efficiendy organize a set of functional areas that
realistically represented the potential capabilities which an SCM tool can possess. The remaining
portion of this evaluation mechanism development effort involved integrating the matrix with a
standardized package format which would provide other useful information regarding the particular
tool. In the following subsections, each phase of this effort is described.

SCM Requirements Defined. Both DoD-STD-2167A and MIL-STD-973 were examined
to determine the current specific SCM requirements goveming the DoD acquisition of software. In
addition, IEEE Std 1042-1987 and IEEE Std 828-1990 were examined to identify possible
dissimilarities between the SCM requirements prevailing in DoD acquisition, versus those in
commercial industry development. As the requirements were compiled, they were grouped
according to the four fundamental SCM elements: identification, control, auditing, and status

accounting.

41

Initiaily, the number of SCM requirements compiled was quite lengthy. We attempted to
construct the vertical axis of the SCM Requirements-Functionality Matrix using this initial list of
requirements. However, we discovered that, due to the large number of requirements, the matrix
extended onto two pages. This was cumbersome and would result in a less effective evaluation
mechanism. Therefore, the size of this list was reduced in order that it might fit on one page.
DoD-STD-2167A and MIL-STD-973 share many of the same SCM requirements, and, as a result,
identical requirements were combined. Furthermore, while many requirements within the same
standard were redundant, such requirements were combined into a single requirement, whenever
this was feasible. By eliminating requirement redundancy, the list was reduced — but not
sufficiently. In order to achieve a list of requirements which would adequately represent SCM
responsibilities while efficiently occupying no more than one page, logically related requirements
were grouped together under one massaged requirement label. The resulting final list consisted of
33 SCM requirements. Appendix A lists these requirements and provides a cross reference to the
applicable standard(s) and paragraph(s) for each requirement. Each group of SCM requirements is
now listed and fully described based on DoD-STD-2167A and/or MIL-STD-973.

Configuration Identification Requirements. The list of SCM requirements
included 10 requirements addressing configuration identification. These requirements are shown in
Table 4-1 and each one is discussed in more detail in the following paragraphs. As mentioned

above, a cross reference for each requirement and the specific standard(s) and paragraphg(s) is

presented in Appendix A.
ment implement plans for performin ration
identification. The contractor shall document and implement plans establishing identification

policies and procedures as outlined in the governing contract. The procedures will address the
identification of data files submitted for approval during reviews, audits, or other events or

activities established by the contract. Each document, software listing, etc. will be identified by a

4-2

unique identifier which specifies the version and submittal status. Additionally, the plan and
.Mmswillindicatehowchangmﬁunpteviousversimsareidenﬁﬁed

Configuration Identification

Document and implement plans for performing configuration identification.

2. Select CSCIs.

3. For each CSCl, identify baselines, developmental configuration, and
associated documentation.

4. Trace CSCIs to Work Breakdown Structure elements when MIL-STD-881 is

invoked.

Decompose and partition each CSCI into CSCs and GSUs.

6. Identify and label documentation, software, and software media placed under

configuration control.

Identify, define, and document interfaces.

8. For each CSCI, allocate and provide traceability for requirements to lower
SCIs and documentation.

9. Ensure correlation between each SCI, its documentation, and other associated
data.

10. Display information about an identifier upon command.

—
.

“©

~

Table 4-1. Configuration Identification Requirements

Select CSCIs. The contractor shall decompose the system into hardware
and software requirements. Similar software requirements shall be logically grouped into computer
software configuration items (CS”"Ts). The type of configuration documentation for each CSCI
will be identified.

For each CSCI, identify baselines, developmental configuraron, and
associated docymentation. The contractor shall establish the functional, allocated, and product
baselines and developmental configuration for each CSCI. The specific documentation which will
be used to establish each configuration baseline is identified. Additionally, the specific
documentation that will be controlled intemally by the contractor as part of the developmental
configuration is identified. Each configuration baseline and developmental configuration will be

established at specified points during the system or CSCI life cycle. The establishment of these

4-3

baselines normally follows government approval of the configuration documentation that describes
each baseline.

contractor shall ensure that each CSCI can be traced back to the Work Breakdown Structure
(WBS).

Decompose each CSC] into CSCs and CSUs. Each CSCI shall be further
decomposed and partitioned into CSCs and CSUs both to facilitate the allocation of requirements

down to lower units and to ease both the design and testing later in the life cycle of the CSCI.

contractor shall obtain or be issued an identifier for each CSCI, CSC, CSU, and documentation
item. Each identifier shall consist of a name or number, version, revision, release/release date, type
designator, nomenclature, and change status. Each identifier shall be embedded within the
applicable software. Software media (i.e., code, documentation, or both) shall be marked with
either a label specifying the software it contains, or a cross reference to a listing of the identifiers of
that software. Furthermore, the media shall be labeled with the contract number, Contractor And
Govermment Entity (CAGE) code, media or serial number, and lot numbers (if applicable).

Identify, define, and document interfaces. The contractor shall identify
and document all interfaces with, or required by, each CSCI. As part of the functional
configuration documentation, selected items shall be identified which are to be integrated or
interfaced with the CSCI. This may include software (or hardware for tightly coupled systems)
developed separately, commercial-off-the-shelf, or already in existence. Interface requirements
shall be documented in an Interface Requirements Specification for each CSCI.

For each 1 d provi ility for irement to lower
SCIs and documentation. The contractor shall allocate requirements for each CSCI to its
respective CSCs and CSUs to facilitate design, development, and test. The traceability of these

requirements shall be documented in each CSCI's Software Requirements Specification (SRS) and

4-4

Interface Requirements Specification (IRS) to indicate a flow of requirements from the system level
specification to each CSCI, and from each CSCI to its CSCs and CSUs. The traceability also
applies to the flow of requirement from the SRS and IRS to test cases identified in the Software

Test Description (STD) and shall be documented in the STD.

The contractor shall ensure, through identification and marking, that each SCI, its documentation,
and any other pertinent data correlate with one another. Identifiers shall relate software to its
associated design and configuration documentation and shall be documented in a Version
Description Document.

Display information about an identifier upon command. The contractor
shall provide the capability to display information about a particular identifier. Information might
include name or number, version, revision, release/release date, type designator, nomenclature,
change status, and associated documentation.

Configuration Control Requirements. The list of SCM requirements included
eight general requirements pertaining to configuration control. These requirements are listed in
Table 4-2 below. Once again, Appendix A provides the references to the specific standard(s) and

paragraph(s) for each requirement listed.

Configuration Control
Document and implement plans and procedures for configuration control.
Establish an engineering release system.
Document and implement a corrective action process.
Apply internal configuration control prior to baselining products.
Maintain master copies of, and control changes to, deliverable software and
documentation.
Prepare a problem/change report for each problem detected.
Prepare and classify changes to baselined documentation and software.
8. Provide access to documentation and code under configuration control.

bl Bl I d {al fa

a

~

Table 4-2. Configuration Control Requirements

45

The contractor shall document and implement plans and procedures for controlling software and its
associated documentation contained in the Software Development Libraries (SDLs) established for
the contract. These procedures shall provide for controlling databases and files during reviews and
update cycles. Procedures shall be in place to control the software and configuration
documentation for each SCI prior to, as well as after, being baselined. The plans and procedures
shall address the control of software, documentation, and data during the developmental
configuration. These procedures shall regulate proposed changes, deviations, and waivers,
document the impact and effectivity of proposed changes, and incorporate only approved changes.
The plan shall describe the process required to: identify the need for the change/deviation/waiver,
classify the change, prepare the required forms, review and evaluate a proposed
change/deviation/waiver, and implement an approved change/deviation/waiver.

Establish an engineering release system. The contractor shall establish an
engineering release system to control the issuance and authorize the use of documentation
associated with an approved configuration. As part of the engineering release system, a release
signature shall be included for each CSCI specification, identifying that the document has been
reviewed and has been approved for release. When required by contract, a DD Form 2617,
"Engineering Release Record (ERR)", will be used to rclease configuration documentation to the
government for approval. All initial releases of, and approved changes to, already released
documentation, software, and other data that establishes a baseline shall be accomplished utilizing
an ERR.

Document and implement a corrective action process. The contractor
shall document and implement a process with procedures to handle problems encountered in
products under intemal configuration control. The corrective action process shall ensure that all
detected problems are quickly reported, action is taken, resolution is achieved, status is tracked and

reported, and historical records are maintained for the duration of the contract. The process shall

4-6

include problem/change reports, classification of problems by category and priority, defect trend

analysis of reported problems, and the evaluation of corrective actions.

contractor shall control software and associated documentation prior to being baselined by the
government. After each CSU, CSC, and CSCI are successfully tested and evaluated, the
contractor shall place the Software Design Document (SDD) and source code listing into the
appropriate Developmental Configuration. The SDD for each CSCI shall initially be placed into
the Development Configuration after preliminary design. The SDD and source listings are updated
as a result of detailed design, CSU testing, CSC integration and testing, and CSCI integration and
testing.

r copies of. h liverabl w
and documentation. The contractor shall controtl all software source code and documentation
scheduled to be delivered to the govemment as part of the contract. Master copies of the software
code and documentation originals shail be kept current, and the preparation and dissemination of
changes shall be controlled. Changes to deliverables will occur only as a result of an approved
Class I or Class II change and will utilize an Engineering Release Record. Documentation may
include the Software Development Plan, System/Segment Design Document, Software
Requirements Specification, Interface Requirements Specification, Software Test Plan, Software
Design Document, Interface Design Document, and Software Test Description.

Prepare a problem/change report for each problem detected. For each
problem detected in software or documentation that is under internal configuration control, the
contractor shall prepare a problem/change report. The report shall fully describe the problem,
corrective action required, and the actions taken to resolve the problem.

and classify change lined documentation and software.
The contractor shall prepare Engineering Change Proposals (ECPs) for necessary changes to

baselined software and Specification Change Notices (SCNs) for necessary configuration

4-7

documentation changes. The contractor shall classify ECPs as Class I (preliminary or formal) or
Class II in accordance with the criteria established in MIL-STD-973. Unless otherwise contracted,
ECPs and SCNs shall be prepared on a DD Form 1692, "Engineering Change Proposal”, and DD
Form 1696, "Specification Change Notice”. An Advance Change Study Notice (ACSN) shall be
used prior to the preparation of a formal routine ECP to summarize a change or identify a topic for
a change proposal. Also included in this requirement is the preparation of deviations and waivers,
which shall be classified as critical, major, or minor in accordance with MIL-STD-973, and shall
be requested using a DD Form 1694, "Request for Deviation/Waiver", or other form contractually
agreed upon.

rol. The contractor

shall provide the government with access to software and documentation that is under the
contractor's intemal configuration control.

Configuration Auditing Requirements. Most of the requirements extracted from
the standards which addressed configuration auditing pertained to details involving how the
govemment should audit and review contractor SCM efforts, rather than how the contractor should
support configuration auditing. Therefore, the list of SCM requirements included only three -
general requirements addressing configuration auditing. These requirements are listed in Table 4-3
and are discussed in detail following the table. Once again, Appendix A contains references to the

specific standard(s) and paragraph(s) for these requirements.

Configuration Auditing
1. Conduct or support formal reviews and audits.
2. Participate in the resolution of discrepancies identified during reviews and
audits.
3. Record and publish meeting minutes.

Table 4-3. Cunfiguration Auditing Requirements

4-8

contractor shall participate in, or chair, formal reviews and audits. These include the System
Requirements Review (SRR), System Design Review (SDR), System Specification Review (SSR),
Preliminary Design Review (PDR), Critical Design Review (CDR), Test Readiness Review
(TRR), Functional Configuration Audit (FCA), and Physical Configuration Audit (PCA). These
reviews and audits may be conducted for each CSCI individually, or concurrently for multiple
CSCIs. The contractor is responsible for designating a co-chairperson and providing the necessary
resources and material required to perform reviews and audits. Also included in this requirement is
the contractor’s responsibility to establish the time, location, and agenda for each review and audit

in accordance with the contract. Required information for each CSCI includes:
e Identification of items to be reviewed or audited.

e Copies of specifications, design documents, software listings, test plans, and procedures
and other documents which describe the contents or use of the CSCI.

¢ Listing of all deviations/waivers.

o Listing of approved and outstanding changes.

e Test data, results, and reports.

e Matrix that identifies requirements of sections three and four of the specifications; includes
a cross reference to the test plan, test procedures, and test reports, results of
demonstrations, inspections, and analyses of requircments; and identifies all deficiencies.

¢ Delivery media for sofiware, documentation, or both.

¢ Intemal evaluation and inspection results
Partici in the resolution of di ancies identified during reviews and
audits. The contractor shall record and track discrepancies identified during the conduct of reviews
and audits. The contractor shall accomplish residual tasks associated with those discrepancies for

which they were identified as being responsible, or assist in determining if ECPs are required.

49

explanatory; hence no further discussion is provided.

Configuration Status Accounting Requirements. Finally, the list of SCM
requiiemems included twelve requirements addressing configuration status accounting. These
requirements are presented in Table 4-4 below. Each requirement listed is further discussed in the
following paragraphs.

Configuration Status Accounting
1. Document and implement plans and procedures for performing

configuration status accounting.

Establish and maintain software development files (SDFs).

Establish software and documentation libraries.

Provide and control access t0 development histories.

Prepare and maintain management records, status reports, and product

evaluation records.

Analyze configuration status accounting.

7. Record the current, approved software, documentation, and identifiers.

8. Record and report the status of request for engineering changes, deviations,
and waivers.

9. Record and report implementation status of authorized changes.

10. Record and report the location of each CSCI version in the field.

11. Ensure information about new releases is incorporated into the configuration
status accounting system.

12. Record and report the results of configuration audits.

NN

o

Table 4-4. Configuration Status Accounting Requirements

n implement pl for performin

configuration status accounting. The contractor shall plan for, and establish procedures for,

recording, storing, and reporting data concerning products that comprise the Developmental
Configuration and configuration baselines.

Establish and maintain software development files (SDFs). The
contractor shall establish a repository containing products and data associated with each SCI

developed. Depending on the requirements of the contract, the contractor shall establish SDFs for

4-10

-

each CSCI, each CSC or logical group of CSCs, and each CSU or logical group of CSUs. The
SDFs will be maintained for the duration of the contract and will contain information such as
design considerations, design constraints, design documentation, data, evaluation results,
schedules, status, and test information.

jbraries. The contractor shall

establish repositories in which to store software and documentation developed as part of the
contracted effort.

ies. The contractor shall

provide access to development histories depending on applicable distribution codes, security
requirements, and Contract Data Requirements List distribution. If digital data is required by
contract, query capabilities shall be provided along with procedures defining the control of

databases and files during review.

¢valuation records. The contractor shall generate management records and status reports on all
products that comprise the Developmental Configuration and the Allocated and Product baselines.
Records shall also be prepared and maintained for every software product evatuation performed.

Amlm_s;_ammmm The contractor shall review and analyze
configuration status accounting data to detect problem trends in reported problems, shall verify
problem resolution, and shall ensure that no additional problems have been introduced as a result
of the fix.

R N V. W mentation, and identifi
The contractor shali establish and maintain records identifying the current approved software,
configuration documentation, and identification number associated with each SCI. These records
shall also include historical information for items associated with each SCI, such as past revisions

to specifications or software versions. For each item just identified, the current status shall be

4-11

-

maintained (e.g., working, submitted, approved, released). The contractor shall also record active

contracts (subcontractors, vendors, etc.) affecting the program.

deviations, and wajvers. The contractor shall record, store, and report the status of all proposed
engineering changes and all critical and major requests for deviations and waivers which affect the
configuration. The status of engineering changes will be recorded and reported, starting from
initial submittal to the government and ending with final approval/disapproval and contractual
implementation. These records shall also contain historical data and information. General
information describing each proposed change shall be maintained in the records, and specific
activities and events associated with the processing of each change shall be tracked.

pes. For each

CSCl, the contractor shall maintain records that contain historical information that documents all
changes to an approved configuration and configuration documentation. Records shall provide
traceability of all changes from the original baselined documentation. The status of all authorized
changes shall be reported. The implementation actions of approved changes shall be tracked and
recorded. These actions include responsible activities and required tasks to accomplish each
change, as well as scheduled dates for completion. Tasks may include software revision, review,
and official release. The status of all retrofit changes to existing products that utilize one or more
changed CSCIs shall be reported.

Record and report the location of each CSCI version in the field. The
contractor shall maintain records of all sofiware configurations released. This information includes
the identification of each CSCI configuration, where the CSCI is installed, the VDD number, w.1d
the effectivity and installation status of configuration changes.

" Ensure information about new releases in incorporated i1to the status
accounting system. The contractor shall ensure that all information about new releases of software

and its associated documentation is recorded in the configuration status accounting system.

4-12

Record and repont the resulis of configuration audits. The contractor shall
record the results/findings, all discrepancies, residual tasks identified, and the scheduled and actual

accomplishment dates for each CSCI audited. General information about each action item shall be
maintained. The status and suspense dates of actions associated with closing the action item will
be tracked. A historical record of configuration audit information will be maintained.

Based on the review of DoD-STD-2167A and MIL-STD-973, it is the researchers'
position that the 33 requirements discussed in this section constitute those fundamental SCM
requirements currently required by the DoD when developing software. This list of requirements
was used in forming the rows of the SCM Requirements-Functionality Matrix. In order to
complete the evaluation mechanism, general SCM tool functions had to be defined. The results of
this effort are discussed in the next subsection.

SCM Tool Functionality Defined. The review of SCM theory brought forth many of the
activities which must be accomplished to enforce the discipline of software configuration
management. These activities center around the four fundamental SCM elements of identification,
control, auditing, and status accounting. At the same time, our review of the models used in
developing current SCM tools suggested the types of activities which SCM tools could be designed
to accomplish. Based on these two areas of our review, a list was compiled of functional
capabilities which SCM tools may possess, and upon which they can rely, in meeting SCM-related
requirements. It is the researchers’ opinion that the functional capabilities of SCM tools can be

grouped into the following seven areas of functionality:
1. Database Management
2. Configuration Build
3. Decomposition Control
4. Work Area Control

5. Change Control

4-13

6. Baseline Management

7. Customization
Relying on concepts presented in Chapter 2, the seven areas of functionality listed are defined and
discussed in the following paragraphs.

Database Management. Repository or library control and querying are key
elements of database management. SCM systems that possess this type of functionality provide
the systematic and organized storing of the product’s software components, whether source code,
object code, or documentation. Such tools usually provide this capability by enabling the tool user
to create and maintain some kind of database system. Whereas older database technology revolves
around a system of multiple directories and sub directories, newer technology calls for an object-
oriented relationship approach. SCM tools based on a directory/sub directory database system
often utilize the scheme of promoting SCIs from one variant branch (i.e., sub-directory) to another
or from one library (i.e., directory) to another to emulate the maturation of the SCIs through their
development life cycle. When based upon a relational database structure, the tool allows the user
to implement the software items as objects, while creating and managing relationships between
these objects. Relational database technology permits the tools to manage the hierarchical
relationships between software items and also to manage component versions and life cycle status.
Such a relational structure allows for status information to be obtained by querying the database.
Regardless of which technology is utilized, the database system can be composed of either a central
repository storing all software items, or multiple libraries, each storing a configuration or variant
form of the product's software items, or a combination of both. On the other hand, instead of
providing for the establishment of a stand-alone database system, a tool can be designed to openly
interface with, and depend upon, a database system which pre-exists in the software engineering
environment.

Configuration Build. SCM systems that provide configuration build

functionality facilitate the user’s efforts to build the product configurations which are required for

4-14

either test or release purposes. In general, tools with this functionality enable the user to input
selection rules detailing which component versions are to be included in a given configuration.
Based on this input, such tools would automatically collect the applicable components, generate
the corresponding derived elements (i.e., objuct code and linked executables), and assemble these
elements into the required configuration.

Decomposition Control. SCM systems that address decomposition control
facilitate the tool user's effort to break down the overall system software into separately
manageable and less complex parts. Tools possessiné this functionality will usually expedite the
user’s effort to decompose the overall software system into various hierarchical levels of SClIs.
Such tools will sometimes automate SCI identification and labeling. Additionally, tools with this
functionality may also automatically map each SCI to a Work Breakdown Structure (WBS)
element.

Work Area Control. Concepts such as access control, working context, and
concurrent/parallel development are key elements of work area control. This area of functionality
deals with how an SCM system controls the tool user's development efforts in the work area. The
degree of work area control is predicated upon how an SCM system establishes and then controls
the working context, or development/working environment. SCM systems routinely force
modifications and development work to be performed outside the protected database of SClIs.
Developers are forced to copy either individual items or entire system (or subsystem)
configurations to personal file directories (i.e., work arcas) where they can perform development
work and/or implement changes. Access to the SCIs within the repository is strictly controlied.
Utilizing various access control rules, which can usually be defined by the tool user, SCM systems
can automate the process of determining who can access the system software. Furthermore, SCM
systems can limit the number of developers who can concurrently access the same software item(s)
and thereby control modifications of the software item(s). Some SCM systems can control and

maintain the development history within each team member’s work area. In this manner,

4-15

configuration control is maintained locally, even if only temporarily, outside the protected database
of software items. SCM systems that allow multiple users to access software items concurrently
provide a means by which to resolve conflicting changes to a software item when they are saved -
back into the database as a new version (or variant). In such cases, an SCM system can rely on
user defined rules to control the merging of conflicting changes so that the result is one new and
identifiable version (or variant) of an item.

Change Control. Closely coupled with work area control, change control
involves the management of the overall change process. This area of functionality includes key
concepts such as version and variant control, the propagation of changes, and the automation of
record keeping activities. Version and variant control involves preserving each modified software
item as a new version or variant (whichever is applicabie) of the item originally copied out of the
protected database. SCM systems that provide for version control ensure that when product
components are modified, the resulting components and/or the changes themselves (i.e., deltas) are
stored as new versions. SCM systems that provide for variant control ensure that product
components and/or configurations can be modified and evolved along concurrent development
branches. Thorough version and variant control ensures that both the genealogical and version
histories of each software entity associated with a product is traceable. As part of change control,
some SCM systems will provide a mechanism pemnitting changes madc to onc software component
or configuration to be propagated to other applicable component or configuration variants
supported by the system. This serves to automate and simplify the change effort by eliminating the
need to manually implement redundant changes in other affected components. Additionally, some
SCM systems will allow logically related changes to be managed, thereby permitting such changes
to be identified and easily accessed at a later point in time. For example, if management desired to
research which software component versions resulted from a change request, they could simply
query the appropriate database of software items by referencing a given logical change (i.e., change

request). Finally, SCM systems providing change control functionality usually automate most

4-16

record-keeping activities involved with performing changes. Change tracking documents (e.g.,
ECPs, SCNs, deviations, waivers, etc.) can be implemented as objects which can, in turn, be
tracked and managed by the SCM tool. Such objects, like their SCI implementation counterparts,
can be propagated through the change process life cycle. Often, an SCM tool with this facility
provides or utilizes a pre-existing network mail system to prompt applicable user parties (e.g.,
reviewers, developers, quality assurance, etc.) for input during the phases of a change tracking
document’s life cycle.

Baseline Management. SCM systems that provide for baseline management
enable the tool user to quickly retrieve the constituent SClIs of an officially approved baseline, or
the constituent SCIs of an internally defined baseline, or the SCIs which satisfy one or more user-
defined selection criteria. Examples of official baseline configurations include functional,
allocated, and product baselines. The design baseline, developmental configuration, and test
configuration are all examples of internal baseline configurations. Regardless of the type of
baseline or configuration, baseline management permits the user either to manage the respective
software items together within the protected database or, given component/configuration selection
rules, to retrieve the appropriate items comprising a user-defined configuration or baseline.
Furthermore, SCM tools with this facility enable the user to copy groupings of items from the
controlled repository to a release directory in the work area.

Customization. This area of functionality serves to magnify the scope of
capability of the other six functionalities. Tools that possess customization functionality provide
the user with the flexibility to fine-tune the tool's facilities to better meet the user’s needs and
interface more efficiently with the existing software engineering environment. When a tool is
highly customizable, the user can then utilize the tool powerfully and extensively to automate SCM
responsibilities by defining component design life cycles, change document/record formats, change

process life cycles, etc.

4-17

SCM Tool Evaluation Mechanism. Based on our compilation of SCM requirements and
our definition of a basic set of SCM tool functionalities, the SCM Requirements-Functionality
Matrix was developed, and is presented in Figure 4-1,. The final SCM Tool Evaluation
mechanism, presented in Figure 4-2, ties the SCM Requirements-Functionality Matrix together
with a compilation of background information conceming the tool. In particular, the evaluation
mechanism addresses information concemning the product, the vendor, interfacing
platforms/operating systems, supported programming languages, and support rationale which
substantiates the corresponding matrix evaluation. The next section highlights the results of our
efforts in exercising the SCM Tool Evaluation Mechanism while assessing the commercial-off-the-

shelf tools sampled.

4-18

Tool Name:
Vendor:

l.MMiWMpIu(wpﬂfmmm

onfiguration Build

Contzol

2. Select CSCls.

3. For each CSCIL, identsfy baseiines. developmental configuration, and associated documentation.

4 Trace CSCls to WBS clements when MIL-STD-881 is urvoked.

5. Decompose each CSCl into CSCs and CS5Us.

6. [denufv and document the version of each SCI commesponding to the documentation.

7. Identify, define, and docusnent interfaces.

8. For each CSCL allocate and provide traceability for requirements to lower SCls and documentation.

9. Ensure comreistion between each SCI, its docwnentation, and other associated data.

10. Display infmnsiontbo\nmldamﬁal'pmmm

1. Document snd implement plans and peocedures for configuration control.

2. Esublish an engincering relcase system.

3. Docurnent and implement a corrective action process.

4. Apply intemal configuration control prios to beselining products.

5. Mantain master copies of, and control changes to, deliversble software and documentation.

6. Prepare a problemvchange report for each probiem detected.

7. Prepare and classify changes to baselined documentation and software.

8. Provide access to documentation and code under configuration control.

1. Provide information in support of formal reviews and audits.

2. Participste in the resolution of discrepancies identified during reviews and audits.

3. Record and publish meeting rmunutes.

X - ph,.;‘ bl f“qu LR

2. Establish and maintain software development files (SDFs).

3. Establish software and di entation libranes.

4. Provide and control access to development histories.

S. Prepare and maintain management records, status reports, and software evaluations records.

6. Analyze configuration status accounting data.

7. Record the current, approved software, documentation, snd identifiers.

8. Record and report the status of request for engineering changes, deviations, and waivers.

9. Record and report implementation status of authorized changes.

10. Record and report the location of each CSC! version in the field

11. Ensure informstion about new releases is incorporsted into the status sccounting systern.

12. Record and report the results of configuration sudits

Figure 4-1. SCM Requirements-Functionality Matrix

4-19

Software Coufiguration Management (SCM) Tool Evaluation

Tool Name:
Version Number:
Release Date:

Frequency of Updates:
Date of First Release:
Number Sold:
Vendor:
In Business Since:
Address:
Point of Contact:
Phone Number:
FAX Number:
Email Address:
Platforms/Operating Systems:

Programming Languages Supported:
Description: (basic vendor description of tool)
SCM Requirements-Functionality Evaluation Matrix: (afttached)

Substantiation of SCM Requirements met by Tool Functionality: (Each requirement satisfied
by one or more areas of functionality will be substantiated based on technical dasa from the
vendor)

L. Identification

I. Control

II. Auditing

IV. Status Accounting

Comments: (any additional information concerning tool capabilities and/or limitations not
highlighted in matrix or substantiation)

Figure 4-2. SCM Tool Evaluation Mechanism

4-20

Using the Evaluation Mechanism

Once constructed, the evaluation mechanism was used in an actual assessment of SCM
tools in the sample. As stated in Chapter 3, the intent of using the evaluation mechanism developed
was not only to evaluate the tools, but also, and perhaps more paramount, to evaluate our
evaluation mechanism.

Tool Sample Defined. This research effort focused only on SCM tools that were
commercially available. Candidate tools included those which either have been involved in
supporting an Air Force software development organization, used on an Air Force software
development effort, or identified by Air Force organizations as potential candidates to be utilized in
either of the two previous situations. The Software Technology Support Center (STSC) at Hill Air
Force Base, Utah, fumished an extensive list of SCM tool vendors, including points of contact.
Unfortunately, many of these were either outdated or had no comresponding telephone number.
However, nine SCM tool vendors were successfully contacted to assist us in our thesis effort.
Background information conceming these vendors, including the product name, point of contact,
address, and telephone number, is shown in Appendix B. From the products of these nine vendors,
three were selected to perform an initial validation of the evaluation mechanism. The tools selected
were Aide-De-Camp (ADC) from Software Maintenance and Development System, Inc., Product
Configuration Management System (PCMS) from SQL Software Limited, and CCC/Manager
from Softool Corporation. This selection was based upon the detail and completeness of data
obtained, vendor support, and the availability of tool documentation or demonstration software.
Due to the complexity of the tools and the limited time available for this research effort, the sample
was reduced by eliminating CCC/Manager from the list of tools identified above. Both ADC and
PCMS are currently being used on Air Force software development programs. The results of using
the evaluation mechanism with each tool are discussed in the following section.

Tool Evaluation. The detailed assessments for both ADC and PCMS , each embodied by

the completion of the evaluation mechanism for the particular tool, are not presented in this section.

4-21

Instead, this material is included in Appendices C and D, respectively. Highlights of both
evaluation efforts and results are addressed here.

Aide-De-Camp (ADC). Aide-De-Camp from Software Maintenance and
Development Systems, Inc. is an object-oriented tool that utilizes a relational database. Entities
such as source code, object code, documentation, design diagrams, test cases, and reports are
identified, stored, and tracked as objects and also as files. Objects are associated (linked) with
other objects. The files are stored in the ADC relational database and the objects are grouped or
categorized logically. For example, source code, documentation, and other information describing
or implementing a specific function, such as an improved radar-jamming module for an aircraft,
are grouped logically in one directory. This group of logically related entities is defined as a
change set (cser). ADC recognizes a version as a base (initial) version and a collection of csets
that describe and document specific changes made to that base version. Versions can be created by
adding or subtracting specific csets to a base version. ADC supports simultaneous access to files,
multiple projects, merging development paths, conflict detection, automated configuration builds,
and database security.

Aide-De-Camp was evaluated by using the evaluation mechanism described earlier. The
results of this evaluation are presented in Appendix C. Aide-De-Camp was found to meet all but
two of the SCM requirements identified and extracted from DoD-STD-2167A and MIL-STD-973.
The two SCM requirements from the Requirements-Functionality Matrix that were not met were
requirement I-2, "Select CSCIs", and requirement IV-6, "Analyze configuration status accounting
data.” The particular functionality or functionalities possessed by Aide-De-Camp which enabled it
to meet each specific SCM requirement are also identified. This provided insight into which
functionalities Aide-De-Camp used to meet each SCM requirement. In addition to the completed
matrix, Appendix C provides further substantiation for each matrix result. The evaluation of Aide-
De-Camp and the substantiation of the Requirements-Functionality matrix results were based on

the information obtained from the ADC/CM Modei 209 User’s Guide, ADC Command Reference

4-22

Guide, ADC Tutorial for UNIX Systems, ADC User’s Guide, X-ADC Administrator’s Guide, and
X-ADC User’s Guide. ADC/CM Model 209 is a utility program and X-ADC is the tool's
graphical user interface. These applications, and the documents listed, are provided with the Aide-
De-Camp tool.

The results from the Requirements-Functionality matrix indicate that Aide-De-Camp relies
heavily on the Database Management functionality to meet, at least partially, 27 of the 33 SCM
requirements listed on the matrix. The next most used functionality, Customization, was identified
for only 12 SCM requirements. Even so, Customization was identified two ‘o three times more
than each of the remaining functionalities. From another perspective, a large concentration of
functionality is used to meet the requirements identified in configuration identification and
configuration control. This indicates that Aide-De-Camp focuses more project identification and
control wherever these items are critical for success in a team development environment. Since
status accounting deals primarily with record keeping, reporting, and other functions pertaining to
database functions, it is not surprising to see that most status accounting requirements were met
using the Database Management functionality, rather than any of the other six functionalities.

Product Configuration Management System (PCMS). Based on high-level
technical documentation (PCMS Overview, Edition 2.1) received from SQL Software Ltd., and
several telephone conversations with their senior technical representative, an evaluation of PCMS
was performed using the evaluation mechanism. In general, PCMS is capable of supporting a
product's entire life cycle, including system decomposition, design and development, test and
evaluation, production, and maintenance cycles. Additionally, PCMS supports the configuration of
not only software items (code and documentation) but also hardware items. This is a significant
capability in that most systems are comprised of both software and hardware requiring that CM
efforts for a system address both software and hardware portions simultaneously. Therefore, CM

responsibilities for a system cannot be divided out easily into separate efforts.

4-23

PCMS is based upon relational database management technology, which pemmits the entire
product to be modeled as objects within the database. The objects and their inter-relationships are
predicated on the attributes assigned to each object. The evolution and metamorphosis of the
product configuration(s) is therefore managed through the modification of object attributes and the
resultant creation of new objects and new inter-relationships. PCMS's relational database
facilitates the decomposition of the overall system functionality into design-parts which, in tumn,
are implemented as product-items (i.e. SCIs, hardware tracking forms). Furthermore, any type of
data (i.e. change tracking forms, meeting minutes, etc.) that can exist on magnetic media can be
implemented as a product-item, and controlled and managed as an object within PCMS's database
system. Layered upon its relational database system, PCMS provides product design and
development, life cycle management, change management, release management, team role
management, and configuration build facilities. In tum, these PCMS facilities can be integrated
with the user’s software engineering environment and interfaced to other design, manufacturing,
and management tools.

This assessment indicated that PCMS relied — at one point or another — on each of the
seven elements of functionality to meet 32 of the 33 compiled SCM requirements. As was the case
wit" * : C, PCMS failed to meet requirements I-2, "Select CSCIs". It should be noted that, despite
PCMS's inability to fully satisfy this SCM requirement, it did provide the facilities to assist the
user’s effort in meeting this requirement. PCMS's database management functionality, based on
state-of-the-art relational database management technology, was the tool's strongest contributing
area of functionality, helping PCMS to meet 17 requirements. Another heavily contributing area
was PCMS's customization functionality, which helped to meet 15 requirements. The evaluation of
PCMS is detailed in Appendix D.

" Unfortunately, due to the lack of detailed documentation (i.¢. user's manuals), the
evaluation of PCMS was limited to a top-level view of how the tool's functionality, rather than

implementation capabilities, addressed each SCM requirement.

4-24

Tool Assessment Findings. The results of the two independent evaluations were
compiled and compared. This comparison is presented in Table 4-5. The evaluation results

revealed similar trends between the two tools in the number of requirements met using particular

functionalities.
Functionality Aide-De-Camp PCMS
Database management 27 17
Configuration build 5 1
Decomposition control 4 6
Work area control 4 2
Change control 6 6
Baseline management 5 4
Customization 12 15

Table 4-5. Requirements Met by Area of Functionality

The numbers in the table indicate that both tools heavily utilize the database management
functionality, especially Aide-De-Camp. These results are not surprising since both tools are
based on relational database technology. As such, database management is a key area. Also, early
SCM tools were primarily databases for storing and retrieving information, namely source code.
The results show that the two modem tools of this evaluation are built upon established and proven
concepts of their predecessors.

Customization is also widely used by both tools. This is mainly due to the customization
functionality overlapping most of the other functional areas. Both tools provide the user with the
capability to develop user-defined procedures or commands to customize change control, databasc
management, etc., for their particular organizaton.

The remaining five functional areas are used much less than database management and
customization. Thus it may appear that only database management and customization are crucial
in meeting DoD SCM requirements, while the others contribute very little. However, these five

functional areas may actually highlight the true usefulness of a tool in today's team development

4-25

environment where control of the multiple configurations is essential. Table 4-6 below shows the
average number of functional areas used to meet each SCM element (i.e., configuration
identification, configuration control, etc.). This information provides the manager with a overview
of which requirement(s) a particular tool places most emphasis. The larger the number in Table
4-6, the more built in capabilities are provided by the tool and the more flexibility and utilities are
available to the user. The average number is calculated by totaling the number of occurrences of
all functional areas (the number of marked blocks) in a given SCM element and then dividing by

the number of requirements within that SCM element.

SCM Element Aide-De-Camp PCMS
Configuration Identificatio: 1.9 1.6
Configuration Control 2.25 1.5
Configuration Auditing 1.66 1.66
Configuration Status Accounting 1.75 1.58

Table 4-6. Average Number of Functional Areas Meeting Requirements

The table indicates that Aide-De-Camp emphasizes configuration control over the other
three SCM elements. The number 2.25 indicates the functional density, or average number of
functional areas used by Aide-De-Camp to meet each requirement under the configuration control
heading. This shows that Aide-De-Camp utilizes a wider variety of functional areas to support
configuration control of sofiware products. PCMS appears 10 address each SCM element equally,
as evidenced by the rather consistent functional densities between the elements. This indicates that
PCMS is a general tool which adequately addresses all SCM elements but does not concentrate on
one in particular. If a project requires considerably more effort in configuration status accounting
than in any other SCM element, then the manager should focus on tools that have a higher

functional density in the status accounting area.

4-26

Summary
Based on the research performed and discussed previously in Chapter 2, the intent was 10

develop a mechanism to be used when assessing SCM tools. The initial compilation of DoD SCM
requirements proved to be too cumbersome, and actually wouid have inhibited the effective use of
the evaluation mechanism. The SCM requirements list was condensed by combining similar and
redundant requirements into a single, more general requirement. There was concem that, by
grouping requirements, the evaluation mechanism would be less effective since a single requirement
on the Requirements-Functionality matrix may actually consist of multiple hidden requirements.
Initially, it was believed that the detail obtained by presenting each requirement individually, and as
written verbatim from the standards, would ease the difficulty in determining if a requirement was
met. This proved not to be the case. The utility of a shorter and more manageable matrix
outweighed the detail sacrificed by grouping requirements.

General tool functionalities were determined based on the research of tool theory. Settling
on an agreed set of functionalities was as challenging as defining the SCM requirements. A tool's
functional capabilities tend to overlap and be interdependent making it difficult to specify stand-
alone functional areas. When functional areas were finally defined, they, and the SCM
requirements, were married into a Requirements-Functionality matrix that served as the heart of the
evaluation mechanism.

Assessments were performed on two SCM tools in order to validate, or fine-tune, the
evaluaton mechanism. Not all of the facilities of either tool fit precisely into one of the arcas of
functionality. This resulted in an iterative process of assessing each tool, modifying the evaluation
mechanism, and then reassessing each tool using the newly modified evaluation mechanism.

During this process, it quickly became apparent that to adequately assess each tool, a working
knowledge and possibly even access to a technical expert were necessary. Once completed, the
evaluation mechanism provided information that can be useful to a manager interested in a set of

tools for a specific software development program. As discussed at the end of the previous section,

4-27

the evaluation mechanism identifies functional areas and SCM elements where tools are more
focused. This can be beneficial to a program whose requirements have been tailored and specific

needs are known. .

4-28

V. Conclusions and Recommendations

Overview
The intent of this research effort was to develop an evaluation mechanism that would
permit Air Force managers to make more enlightened decisions when selecting one of the

numerous commercially available SCM tools to support his or her program. This chapter

presents the overall findings of our research effort. These findings address the analysis results
of both the evaluation mechanism and tool evaluation portions of our research effort, the
limitations of our research design, and recommendations for further study regarding the

evaluation mechanism and tool evaluation.

Analysis Results

Compiling a list of SCM requirements based on published standards and guidelines
and compiling a set of fundamental tool fux.\ctionality based on SCM theory and state of the art
tool technologies enabled the construction of the SCM Requirements-Functionality Matrix.
Combining this matrix with a generated set of additional background information permitted the
development of an effective SCM Tool Evaluation Mechanism. This evaluation mechanism
was then used to assess two commercially available SCM tools, Aide-De-Camp and the
Product Configuration Management System. The following subsections present the findings
regarding the development and utilization of the evaluation mechanism.

Evaluation Mechanism. The evaluatior: mechanism required numerous iterations before
its format finally converged to one which appears to provide a useful and meaningful assessment
tool. The final evaluation mechanism, as presented in Chapter 4, is capable of providing
information about the general characteristics and capabilities of an assessed tool. A tool's
functional areas are mated to the general SCM requirements of a given software devclopment

effort. As stated in the standards, the requirements are intended to be tailored or eliminated if not

5-1

required for a particular program. By grouping the requirements by SCM elemental area, as done
in the evaluation mechanism, minor tailoring of requirements will have a negligible impact on the
Requirements-Functionality matrix. Only when substantial areas are tailored or removed is the
matrix affected. When this does occur, those inapplicable requirements can simply be eliminated
or crossed off the matrix. If the evaluation mechanism is used as intended, the evaluator of a
candidate SCM tool will have an in-depth understanding of the tool and what it can offer to an
organization or program. As evidenced in Appendices C and D, a completed evaluation can be
lengthy and involve great detail. Because of this, even if the evaluation mechanism cannot identify
which possible SCM tool is the best choice, the mechanism will force the evaluator to focus on the
specific SCM requirements of their program and what specific tool functionalities are needed.

Tool Evaluation. Performing the two tool evaluations using the evaluation
mechanism provided not only a sincere appreciation for the commercially available technology
addressing SCM, but also eonstructive feedback conceming the merit of the evaluation
mechanism. The two evaluations indicated that the notion of meeting one or more SCM
requirements did little or no justice in reflecting the tremendous functional capabilities of these
tools. Additionally, the tool evaluations indicated that it was difficult to categorize each of a
tool's facilities as part of one fundamental functional area.

As mentioned at the end of Chapter 4, actually performing the tool evaluation and
completing the evaluation mechanism proved to be difficult and sometimes tedious. A detailed
working knowledge of the tool was required. This can be obtained in one of two ways: either
acquire a copy of the tool and use it, or read and digest the information contained in vendor
supplied documentation. This effort was forced to rely on the latter of the two. The acquired
documentation was, in many instances, confusing. Numerous phone calls were made to the
vendor of each tool in order to clarify or elaborate upon specific capabilities which had eluded

us in our quest to gain a thorough understanding.

Limitations

It should be noted that the proposed research design for this effort had several
limitations, which served to decrease the sample size and, in all probability, introduce errors
into the overall assessment. First, inaccessible or proprietary data hindered efforts to collect
the necessary data needed to develop a working knowledge of a particular tool and to
accurately assess the tool. Second, most SCM tools exist as an integrated part of a larger
software engineering tool, rather than as a stand-alone tool. Therefore, isolating and extracting
SCM-specific information from the overall documentation of the engineering tool proved
difficult. Finally, considerable time was required to collect necessary data and to develop a
working knowledge of each tool. Therefore, the time constraints of this research effort limited
the number of SCM tools that could be assessed and the working knowledge gained for each

tool.

Further Study Concerning the Evaluation Mechanism

First, the evaluation mechanism was tuned based on the examination of only two SCM
tools. The overall effectiveness of this mechanism over a wide range of SCM tools remains
unknown. It would therefore be worthwhile to perform a more in-depth study involving a
larger sample of tools, either to validate the evaluation mechanism as is or to determine how it
might be changed to improve its effectiveness.

The evaluation mechanism was developed, focusing mainly on DoD SCM
requirements, and specifically on how a sample of tools could meet these requirements. This
makes good sense. A potential user of any given SCM tool will obviously be interested in
whether or not that particular tool will meet their specific SCM requircments. However, in all
probability, a user will be equally concerned with the functionality of a tool. For example,
how easy is the tool to use in the work area environment and how well does the use of the tool

support and/or facilitate software development and modification? These functionality issues

5-3

do not directly tie into meeting SCM requirements. Therefore, a second area for further study
would involve modifying the evaluation mechanism to emphasize tool functionality, or the
results and impact thereof, to the same degree as SCM requirements.

The evaluation mechanism developed in this study can only be employed to determine
whether or not each SCM requirement is met and if so by which functional area(s). There is
no determination as to how well a requirement is or is not met. For example, one tool may be
very strong in meeting a given requirement while another tool is very weak in meeting the same
requirement. Given this scenario, the current evaluation mechanism would indicate that both
tools meet the SCM requirement rather than one tool meeting the requirement decisively over
the other. In all likelihood, a user will be quite interested in just how well a particular tool will
meet certain SCM requirements, especially those requirements the user emphasizes. Therefore,
further study in this area could address incorporating a scheme into the evaluation mechanism

based on some established criteria, to indicate the level at which a tool meets a requirement.

Further Study Concerning Tool Evaluations

As stated before, the assessment of each SCM tool was based on a review of vendor
supplied documentation such as user's manuals and product literature. Given the proprietary
status of the product software and the time limitation goveming this research effor, it was not
possible to obtain a working copy of either tool and then develop a true working knowledge of
each. This is probably not unlike the situation in which Air Force management would be if
they were looking at assessing a sample of tools.

Therefore, the tool evaluations were based on the limited understanding of each tool.
It would be worthwhile to research these same two tools, as well as other tools, by surveying
actual Air Force and other DoD programs which have, either themselves or through an outside
contractor/organization, used these tools to enforce SCM requirements. In this manner,

valuable input from the knowledgeable user(s) of a tool could be meshed into that tool's

54

evaluation providing a more accurate portrayal and substantiation of that tool's functional
capabilities and ability to meet the various SCM requirements.

Summary
This research study was performed, primarily, in an effort to develop an evaluation

mechanism to assist Air Force management in selecting a software configuration management tool
for their program or project. Only by field-testing the evaluation mechanism in actual program
offices can the effectiveness of this effort be verified. There are important points to remember
when considering the use of the evaluation mechanism developed as a result of this research.

First, an organization must follow a defined tool assessment process. As a minimum, this
process should consist of analyzing the organization's needs, analyzing the environment in which
the tool will operate, developing a tool candidate list, and then applying criteria and selecting a tool
(Firth et al, 1987:31-33). Therefore, an evaluation mechanism, such as the one developed as part
of this research effort, is only a part of a much larger assessment process.

Second, an organization must have a well defined configuration management process in
place which is understood by everyone involved. If an organization does not have a mature and
enforced process, then attempting to assess the potential impact of a variety of SCM tools is
pointless if not impossible (Paulk et al, 1991:4).

Third, using this evaluation mechanism will not guarantee that the final tool choscn will
improve the SCM environment of an organization. IEEE Std 1042-1987 asscrts that if the
members of an organization do not trust or are unwilling to use new SCM tools and methods then
the organization's performance will not improve and may, in fact, be hindered (ANSI/IEEE,
1988:33). Therefore, the management of any organization must carefully consider the decision to
proceed with the time consuming and expensive process of assessing and procuring an SCM tool.

In conclusion, it is our hope that, as a result of this research effort, not only can Air Force

management make worthwhile use of this evaluation mechanism but also that it can gain a more

cognizant understanding of the numerous SCM requirements, the importance of these requirements
to the successful accomplishment of any software development effort, and the nature and potential

of the tool technology commercially available.

5-6

Appendix A: SCM Requirements - Standards Cross Reference

The information contained in this appendix provides a listing of each SCM requirement used in
the evaluation mechanism. Next to each requirement, the standard (DOD-STD-2167A, MIL-STD-
973, or both) from where the requirement was determined is cited and the specific paragraph(s) is
identified. For readability, “2167A" refers to DOD-STD-2167A and "973" refers to MIL-STD-
973. In both cases, each is followed by the specific paragraph being referenced.

Confleuration Identification Requi I Ref

1. Document and implement plans for performing configuration identification. 2167A, 4.5.1
973,4.3.2.c.1
973,4.3.2c.3

2. Select CSClIs. 973,4.4
973,5.3.1.a
973,5.3.2

3. For each CSCI, identify baselines, developmental configuration, and 973,44

associated documentation. 973,5.3.1.b
973,5.3.1e
973,5.3.1.f
973,5.3.4
2167A,4.5.1.a
2167A,4.5.2a
2167A,5.75.2

4. Trace CSClIs to Work Breakdown Structure elements when MIL-STD-881 973,5.2.2
is invoked.

5. Decompose each CSCI into CSCs and CSUs. 2167A,4.25

6. Identify and label documentation, software, and software media placed 2167A,45.1b

under configuration control. 2167A,45.1¢
2167A,4.5.1d
2167A,45.1.f
973,4.4
973,5.3.1.g
973,5.3.1.
973,5.3.6
973,5.3.6.1
973,5.3.6.2
973,5.3.6.3
973,5.3.6.5
973,5.3.6.7.1

7. Identify, define, and document interfaces. 973,5.3.1d
973,5.3.4.1.1
973,5.3.7.1

Configuration Identification Requi s (cont.

8. For each CSCI, allocate and provide for requirements to lower SCls and
documentation,

9. Ensure correlation between each SCI, its documentation, and other
associated data.

10. Display information about an identifier upon command.

Reference

2167A,4.25
2167A,4.2.6
2167A,4.34

2167A,45.1¢
2167A,5.75.1
973,5.3.1.h
973,5.3.6.5

973,5.3.6.5

Configuration Control Requirements

1. Document and implement plans and procedures for configuration control.

2. Establish an engineering release system.

3. Document and implement a corrective action process.

4. Apply intemal configuration control prior to baselining products.

5. Maintain master copies of, and control changes to, deliverable software
and documentation.

6. Prepare a problem/change report for each problem dctected.

A4

Reference

2167A,4.1.8
2167A,4.5.2
973,4.3.2.¢c
973,4.3.3
973,45
973,5.3.3
973,5.3.3.3
973,54.1
973,5.4.2.1

973,5.3.5
973,5.3.5.1
973,5.35.2

2167A,4.19
973,5.3.3

973,4.5

2167A,45.2b
2167A,4.5.2d
2167A,5.1.5
2167A,5.2.5
2167A,5.35.2
2167A,5.3.53
2167A,54.5.2
2167A,5.4.53
2167A,5.5.5.2
973,5.3.4.2

2167A,4.1.10
2167A,4.4.3
2167A,5.3.5.1
2167A,54.5.1
2167A,5.5.5.1
2167A,5.6.5
973,533

Configuration Control Requirements (cont.)
7. Prepare and classify changes to baselined documentation and software.

8. Provide access to documentation and code under configuration control.

Reference

2167A,4.5.5
2167A,5.8.5
973,54.2.1
973,54.2.2.1
973,5.4.2.3.3
973,5.4.2.3.3.1.2
973,54.33
973,544.3
973,5.4.6

2167A,4.5.2.c

Confieuration Auditing Requi

1. Provide information in support of formal reviews and audits.

2. Participate in the resolution of discrepancies identified during reviews and

audits.

3. Record and publish meeting minutes.

Reference

2167A,4.1.2
2167A,5.1.1.1
2167A,5.1.1.2
2167A,5.2.1
2167A,5.3.1
2167A,5.4.1
2167A,5.7.1
2167A,5.8.1
973, 4.7
973,5.23
973,5.6.1
973,5.6.1.1
973,5.6.1.2
973,5.6.1.3
973,5.6.2
973,5.6.2.1
973,5.6.2.2
973,5.6.2.3
973,5.6.3
973,5.6.3.1
973,5.6.3.2
973,5.6.3.3.f
973,5.6.3.3.8
973,5.6.3.3.h

973,4.7
973,5.6.24.c
973,5.6.34.c

973,5.6.1.3.¢
973,5.6.24.a
973,5.6.34b

C n | £ s | | a I . B . I
1. Document and implement plans and procedures for performing configuration
status accounting.

2. Establish and maintain software development files (SDFs).

3. Establish software and documentation libraries.

4. Provide and control access to development histories.

5. Prepare and maintain management records, status reports, and software
evaluation records.

6. Analyze configuration status accounting data.

7. Record the current, approved software, documentation, and identifiers.

8. Record and report the status of requests for engineering changes, deviations
and waivers.

9. Record and report implementation status of authorized changes.

Reference

2167A,4.5.3
973,4.2.9
973,43.2.c

2167A,4.1.8
2167A,4.29
973,5.3.33

973,5.3.3.1
973,5.3.3.3

2167A,44.3
973,4.3.1
973,4.3.3

2167A,44.3
2167A,4.5.3

973,5.5.7

973,4.3.2b
973,4.6.a
973,535
973,554
973, H.5.1.1.1
973,H.5.1.1.2
973, H.5.1.1.5
973, H.5.1.1.6
973, HS5.1.1.7
973, H.5.1.1.8

973,4.6.b
973,4.6d
973,5.54
973,H.5.1.2

973, 4.6.
973, 4.6.f
973,5.3.3
973,5.5.4
973,5.5.8
973, H.5.1.3
973,H.5.1.4
973, H.5.1.5.1
973, H.5.1.5.3

Configuration Status Accounting Requirements (cont.) Reference

10. Record and report the location of each CSCI version in the field. 973,4.6.g
973,H.5.1.6.1.2

11. Ensure information about new releases is incorporated into the configuration 973, 5.3.5.2.1
status accounting system. 973,5.3.5.2.2

12. Record and report the results of configuration audits. 973,4.6.c
973,5.6.2.1
973,5.6.2.4.b
973,5.6.3.1
973, H5.1.7

Appendix B: Software Configuration Management (SCM) Tool Vendor List

B-1

Software Configuration Management (SCM) Tool Vendor List

Tool Point of Contact Vendor/Address
Clear Case Ms. Norma R. McCluskey Atria
24 Prime Park Way
Tel: 508-650-1193 ext. 39 Natick, MA 01760
Fax: 508-650-1196
email: norma@atria.com
Ensemble Mr. Ron Imbriale Cadre
222 Richmond St.
Tel: 401-351-2273 Providence, RI 02903
Fax: 401-351-7380
email:
CaseWare/CM Mr. Riz Haq CaseWare, Inc.
14785 Preston Rd, #550
Tel: 214-392-3008 Dallas, TX 75240
Fax: 214-960-9911
email: rizh@cwi.com
DOMAIN Mr. Mike Gallagher Hewlett Packard Company
Software 5301 Stevens Creek Blvd.
Engineering Tel: 800-752-0900 PO Box 58059, MS S1LSG
Environment Fax: Santa Clara, CA 95052-8059
DSEE) email:
Rational Control Rational
, 3320 Scott Blvd.
Tel: 408-496-3600 Santa Clara, CA 95054-3197
Fax: 408-496-3636
email:
Aide-De-Camp | Ms. Susan Paquet Software Maintenance & Development Systems, Inc.
(ADC) 200 Baker Ave., Suite 300
Tel: 508-369-7398 Concord, MA 01742
Fax: 508-369-8272
email: adc@smds.com
Product Mr. Sohail Haque SQL Software Ltd.
Configuration 8000 Towers Crescent Dr., Suite 1350
Management Tel: 703-760-7895 Vienna, VA 22182
System (PCMS) | Fax: 703-760-7899
email:
TeamTools Mr. Gary Wilkins TeamOne Systems, Inc.

Tel: 408-730-3500
Fax: 408-730-3510
email: sun.com!tcamone!gary

710 Lakeway Dr., Suite 100
Sunnyvale, CA 94086

Source_Manager

Ms. Virginia K. Jones

Tel: 408-227-7700
Fax: 408-227-7757
email:

TransWare Enterprises, Inc.
5450 Thornwood Dr., Suite M
San Jose, CA 95123-1222

Appendix C: Software Configuration Management (SCM) Tool Evaluation

Aide-De-Camp (ADC)

Software Configuration Management (SCM) Tool Evaluation

Tool Name: Aide-De-Camp (ADC)
Version Number: e ADCv8.01.2 '
¢ CM Model 209 v3.0.10 (A utility program consisting of
macros and scripts to simplify ADC operation.)
o X-ADC v1.0 (A graphical user interface.)

Release Date: July 1993
Frequency of Updates: Semiannual version releases with intermittent bug fixes
Date of First Release: 1983
Number Sold: over 300 licenses (both individual and site licenses)
Vendor: Software Maintenance & Development Systems, Inc.
In Business Since: 1981
Address: 200 Baker Avenue, Suite 300
Concord, MA 01742

Point of Contact: Susan R. Paquet

Phone Number: 508-369-7398

FAX Number: 508-369-8272

Email Address: adc@smds.com

Platforms/Operating Systems: DEC VMS, DEC ULTRIX, IBM RS/6000, HP HP/UX,
HP 9000, MIPS, SPARC, Apple A/UX, 386/486, and Silicon Graphics

Programming Languages Supported: Ada, C, FORTRAN

Description: Aide-De-Camp is an object-oriented tool (versus file oriented) utilizing a relational
database, which represents changes logically as well as physically. ADC captures a change as an
object (a grouping of logically related entities associated with the particular change): source
modules, documentation, design diagrams, and other information. This group of logically related
entities is defined as a change set (cset); change sets have attributes that describe the change
logically and properties that describe the change physically (i.e., changed source code lines).
Versions are simply a collection of change sets specified by the user. ADC supports simultaneous
access to files, multiple projects, merging development paths, conflict detection, automated
configuration builds, and database security.

SCM Requirements-Functionality Evaluation Matrix: (attached)
Substantiation of SCM Requirements met by Tool Functionality:

I. Configuration Idenuf cauon

can store an ASCII text ﬁle in the database. Itis snmply stored asan object of lype source thh a speclﬁc
file name that identifies it as a configuration identification plan for SCM. ADC provides a standard set of
macros and the capability to define user-specific macros to aid in the identification and tracking of source
code, object code, documentation, and other information requiring identification for the effort. Because
each macro has a defined usage, ADC can help define the identification procedures for a given project.
The system administrator will define all the pertinent objects that need to be identified, any attributes

C-2

which help describe and identify each instance of an object, and the relationships or associations between
the objects.

2. Select CSCls. This is a manual task and is not supported by ADC. Once selected,
ADC will record, track, and repon CSCI mfomauon See reqmrement I-3 nmmednately followmg

documentation. Each CSCI can be dcﬁned as an object wnh the atmbute "csets" that 1dennfy a specnﬁc
group of csets. Each cset is associated with a source file containing documentation, plans, etc. in the form
of ASCII text. Formal baselines are established when a version or group of csets is installed using ADC's
checkpoint feature. Once a version is installed it cannot be changed, it is frozen. When installed is
performed a duplicate copy of the version is created which can be changed and is considered plastic. The
CSCTI's developmental configuration is the plastic version of the version installed after the Software
Specification Review, when the allocated baseline is established.

4. Trace CSCIs to WBS elements when MIL-STD-881 is invoked. As stated previously,
CSCIs can be defined as objects. In addition to the cset attribute CSCI objects can have an attribute
"WBS" which specifies which Work Breakdown Structure elements a given CSCI pertains. Likewise, an
object can be defined as "WBS elements” with the attribute "CSCI". This provides a two way link
between each WBS element and the applicable CSCI.

5. Decompose each CSC into CSCs and CSUs. ADC supports a package that
establishes and tracks hierarchies. Hierarchies can be set up for any entity type. To meet this
requirement, source files would be the entities of a source hierarchy resembling a CSCI, CSC, and CSU
breakout. The user must manually define the hierarchy using the defhier macro command. This macro
establishes the "ultimate ancestor” or highest parent in the hierarchy representing a CSCI. Utilizing the
addhier macro which adds a parent-child pair, source files representing CSCs can then be added. The
same procedure applies for representing CSUs. Once the initial hierarchy is established the user can
maintain it using ADC's macro commands such as reporting the full contents of a hierarchical tree in an
indentured listing and deleung a parent-chxld pau'

ADC will automancally assign a name for each file it mamt.ams If this is not appropnaw the user may
assign his own naming scheme unless Model 209 is used. The vendor states that Model 209's process
enforcement requires the automatic assignment of names to csets. However there are ways around such
constraints. Each SCI is managed as a source object consisting of a file containing source code. This
object can have a user-defined object attribute such as "ID" or "CPIN" depending on the requirements of

- the contract. The documentation is defined as a source object consisting of files containing ASCII text.
These objects can also have a user-defined object attribute such as "ID" or "CPIN." These two object
classes can be associated with each other through attributes. The source code objects have an attribute
"documentation” that specifies specific documentation associated with a specific file containing source
code. Likewise, the documentation objects have an attribute "source code” that specifies source code
described by a particular document. Documenting the exact version of each SCI corresponding to a
particular document is facilitated by ADC's report capabilities. A query of all source code attributes for
each instance of (or specific) documentation objects can be performed and reported as a list, which can
then be stored in an ASCII text file. This file then becomes a new instance of a document object, and can
be easily updated by reissuing the report to a list command.

7. Identify, define, and document interfaces. ADC automatically creates a dependency
attribute for each change set object or source file. This attribute identifies which software modules call
and are called by the software modules contained in the change set object or source file. The definition
and documentation of each interface is a manual task for the user but, once completed, ADC will track

. and control this documentation as ASCII text files stored as source objects. The source objects, consisting
of files containing source code, can have an attribute defined as interfaces that associates the source code
to its interface requirements. ADC will maintain this association to facilitate tracking and control of
source code and documentauon concurrently See the dnscussnon for requlremem I-9 below.

documentation. ADC does not have thc capablhty to allocate requnremems This is a manual task left up

C3

«

to the system administrator. ADC does provide traceability between requirements, SCIs, and
documentation although the vendor states that this is not the intended purpose of the tool The method is
similar to the discussion in requirement [-4 above dealing with tracing CSCls to WBS elements. In this
case a requirements object is defined. This object has the attributes "documentation™ and "source code.”
This associates the documentation and source code objects to the requirements object. The documentation
object has the attributes "source code” and "requirements.” Likewise, the source code object has the
attributes "requirements” and "documentation”. In this manner, a specific requirement can be traced to
specific source code and document(s), a particular document to specific requirement(s), and given source
code to the requuemem(s) itis dnven by.

ADC tracks changes by loglcally groupmg all enuues related to a change Thns mcludes source code,
documentation, and other data. ADC requires that the user designate a file which documents a change
that the user wishes to check in to an alpha, beta, or release version. In addition, ADC automatically
includes the file in the database, tags the file as documenting the change, and verifies that the file is not
empty before ADC actually processes the change. This ensures that a given version of software includes
the correct supporting documentation from which it was developed, as well as any other supporting data.
It will not, however, guarantee that the documentation is correct, but only that a specific source code
cannot be selected which would inadvertently select the wrong supporting documentation. When a user
selects a specific version by identifying a collection of change sets, ADC automatically links the
appropriate entities and builds the configuration.

10. Display information about an identifier upon command. The ADC system stores
and tracks information contained in the database as objects. Each object is defined as a specific type, such
as a cset (change set), directory, or source file. ADC manages any type of data or information as objects
with specific attributes. Identifiers may be defined as objects of the type attribute or abstract. These
"identifier objects” can then be associated with objects of the type source or cset. When the source file or
cset is installed (baselined), so is the identifier — and neither can be changed. ADC provides a querying
facility through the display command that will retrieve a particular instance of an identifier object, then
report it to the CRT screen along with its information.

1R Conﬁgurauon Contml

store an ASCII text ﬁle in the dalabase Itis snmply stored as an object of type source wnh a specific file
name that identifies it as an configuration control plan for SCM. ADC contains a macro command
language that has many standard and tailorable commands. In addition, reports can be created to a user's
specific needs. The system administrator for ADC can develop macros and special reports/form to be used
in performing configuration control for those functions which are not done automatically by ADC. This
in effect defines and enforces many of the procedures to be used by the developers on a given project.
However, the process of defining a plan, and its associated procedures, is still a manual task and is left up
to the user.

2. Establish an enginecring release system. ADC/CM Model 209 provides a generic
engineering system called the M209 and is based on four development phases: development, alpha test,
beta test, and customer release. This supports an engineering release system in that the only software and
documentation formally distributed to a customer is that which has successfully reached the customer
release phase. No products should be released to a customer while in any other phase. The system
administrator for ADC or the project leader has the capability to install a version when the software has
been thoroughly tested and the documentation has been reviewed and both are considered stable. This
does not completely meet the intent of this requirement because all that is really being accomplished is
identifying and preventing changes to a tested and verified version. Levels of approval, sign off authority,
and release procedures are left up to the user to define. The user can define his own process using the
ADC software without using the M209.

3. Document and implement a corrective action process. Same methodology and

concepts described in requirement II-1 above,

C4

versions are consxdeted to exist in two dlsunct states, installed (basehned) and plastIc (under
development). An installed version cannot be changed whereas a plastic version may be modified as
development progresses. A version is installed using an option called checkpoint that freezes software,
documentation, and other associated data at any time. The project leader does not necessarily only use
checkpoint when establishing a baseline. The user can freeze files at any time (e.g., when a CSU has been
successfully coded and tested). When a checkpoint is performed, ADC will create a working copy of the
version to be frozen so that development towards the next version can begin. This working copy is
initially the same as the frozen version, except that the version number has automatically been
incremented by one unit so that historical development can be maintained. ADC supports four
development phases: development, alpha test, beta test, and customer release. Alpha test is in-house
testing by those individuals involved in the development of the software. Beta test involves customer
testing, and customer release is the final version of the software, approved for customer use. These are
considered contractor internal baselines, and with the exception of the development phase, changes are
considered "bug fixes."

documentation. As menuoned in reqmremem II-4 above. by usmg check pom: any software,
documentation, etc., can be frozen from change to establish a protected baseline. No changes can be made
to information comamed in ﬁles whxch have been installed using check pomt

: g ected. ADC provides various
pre-defined reports and has lhe capabnlny to taxlor reports. Using the commands openfile, writefile, and
closefile, the user-defined reports can be created. A series of ADC macro commands can be developed
that will query the database, retrieve the requested data, and format the output in the form required by a
user-defined report. Initially, problem reports must be manually entered into the database by the system
administrator as a problem_report object. This object can then be assigned descriptive attributes such as
identification, priority_level, status, and assigned_to. The vendor agrees that ADC has the capability to
track "bugs", but the vendor recommends purchasing an additional tool that can interface with ADC and
is more adequate for the purpose

g 3 are. As stated for
requirement I1-6 above, repons can be tallored to meet the specnﬁc needs of the user, such as reporting an
engineering change proposal in the DD Form 1692 format. In addition, through the use of csets ADC
logically groups all entities or objects associated with a particular function or change. For example,
consider a change needed to incorporate a new software interface. All necessary software and
documentation changes, engineering change proposal, and other data required to incorporate this new
interface will be grouped as one unique cset. A version is secn by ADC as a group of particular cset. A
change to an existing version can be accomplished by developing a new cset and adding it to the group of
csets to create a new version. Since a cset is a unique entity, information about a particular change can be
retrieved rather easnly The classification can be merely an attribute of a cset or a keyword object.

8. Provide access to documentation and code under control. Through ADC's CM Model
209 security features, access to the database is controlled. ADC provides for three authorization levels:
system administrator, project leader, and developer. The administrator has access to all of the ADC
functions and databases; a project leader has access to his or her project database, and can establish
baselines by freezing software, while also performing configuration builds. A developer can checkin and
checkout files for development within a given project. Only the administrator can assign access authority
to individuals, and only one authorization level is assigned per individual, no matter how many projects
each is assigned. Government individuals can be issued an authorization level to access the database.
Modification to Model 209 can be performed where attributes can be set to flag a user as "read only".
Such users would be permitted to access file but not to perform the Checkout capability, thus not able to
modify files. In addition, ADC supports concurrent access to a version, phase, release of software.
Access to any given software, documentation, or other data will not be prevented if the requested data is
already being accessed by someone ¢lse.

C-5

o1 Conﬁgurauon Audmng
i i and audits. Using ADC's report
feature, mymformauonmmedatabasecanberemevedandrepmed Mmhofmemformauonwcessary
to support an audit or review can be reported by ADC. For example, an installed (baselined) version can
be reported, along with all objects associated or having a relationship with that version. This would
include individual files containing source code or documentation, change history, and lists of change
requests, to name a few

While ADC does not acuvely molve dnscmpancm, u can record them thcy can be dcﬁned asa

"discrepancy” object of type source, or even generic. Source is a better choice since generic objects
cannot be installed and are therefore changeable. Each instance of a discrepancy can be associated with
one or more other objects, such as source objects. In this way a file containing source code is linked to the
discrepancy objects (files containing discrepancy information). If the object is of type source and has been
installed, a history of a specific discrepancy can then be developed. However, ADC does not provide a
tracking capability that can actively monitor the scheduled close-out date and the progress to date. This
information must be manually input to, and monitored by, the user.

3. Record and publish meeting minutes. ADC facilitates the storing of ASCII files,
such as minutes from a Functional Configuration Audit. This is accomplished by defining "minutes” as
an object of type source. The file containing this text information can be displayed on (reported t0) a CRT
screen, or printed on hard copy if a printer is installed on the hardware platform supportcd by ADC.

IV. Configuration S(atus Accounung

ADC can store an ASCII text ﬁle in the database, sunply as an object of type source wuh a specxﬁc ﬁle
name that identifies it as a configuration status accounting plan for SCM. ADC provides a standard set
of macros, and the capability to define user specific macros to assist in performing status accounting of
information required for the effort. Because each macro has a defined usage, ADC can help define the
status accounting procedures for a given project. The system administrator will define all the pertinent
information and data that need to be recorded, stored, and reported.

2. Establish and maintain software development files (SDFs). ADC utilizes an
integrated database, and can archive and track any ASCII and non-ASCII files, as well as source and
object code. ADC normally stores information about an entire project's software and documentation in a
single database, separate from the database used for SCM of the development of the project. This provides
an additional level of security and ensures the integrity of the development history by removing the
database from direct user access. Transfer commands provided by ADC allow the development
information to be exported to the historical database. As just stated, ADC stores historical information for
the entire project in a single database. This is somewhat different than a hard copy version of a software
development file, which is usually an individual file per unit of software. Having a single database is not
a problem since ADC uses object-oriented methodology. In this way, all related entities are grouped
logically and can be retrieved easily. Although the information about all software in the project is stored
together, everything is stored as objects with associations; information pertaining to specific software can
be retrieved using an import command.

3. Establish sofiware and documentation libraries. Files containing source code, object
code, and documentation are stored in a repository within the ADC database. Using the various query and
list commands provided by ADC, software and documentation can be retrieved from the database much
like that from a library. This is a simple case of database management.

4. Provide and control access to development histories. Histories are automaticaily
tracked as each SCI is developed. Source code, documentation, and other text information are defined as
objects of type source which can be installed (baselined) using the checkpoint feature. To make a change
to an installed source object a new version consisting of one or more change sets (cset) is created. ADC
tracks these csets, maintaining a history of development from the initial version through all csets based on
that initial version. This history is stored in the database. As described earlier, ADC provides a security

C-6

facilities which controls access to the database. The system administrator specifies who has access and
what level of access. ADC records all system transactions to provnde an audu trail of system accesses.

5. Prepare and mair. g S, I
records . ADC can create custom i~)0rts usnng loops fonnat slalements and condmonal tesung,
supported by a system macro la“guage All information contained in the ADC database is accessible, and
can be presented in a user defined report. Since, as already stated, ADC is capable of storing any ASCII
text file, these reports and records can be stored and maintained within the ADC database.

6. Analyze configuration status accounting daia. ADC provides no capability to
automaticallv examine problem reports in order to determine a trend and to verify if problem trends have
been eliruinated. This can be manually accomplished, using various query commands provided by ADC.
The database can be queried for all instances of problem reports concerning problem X. ADC will
retrieve this information, but it is up to the user to analyze the data and determine if the trend is no longer
present. For this reason ADC does not meet thls requnrement

capability is mherem in ADC since it is bUlll around a relauonal dalabase purposefully developed for
storing informatidn about a project, such as software and documentation. ADC allows the user to freeze
software at a specific point in development (e.g., the establishment of the allocated baseline). The
software, documemauon. and o(her related dala is archlved and cannot be changed nnadvenently

waivers. The same methodology and capablhues dlscuswd for nequuemem ll-6 wher are also apphcable
to this requirement. Requests for changes, deviations, or waivers prepared in this requirement can be
recorded and tracked in the same way as problem reports.

II-7 above. Authonzed changes are grouped loglcally as acset Thns cse can have an attribute that
identifies the status of the change, in addition to other attributes that further describe the cset. Csets can
be stored just like any software file for hnstoncal purposes (see IV-2).

conceming the locauon or snes using a pamcular version ol' software is stored ina data file and is
treated as an object, just like the documentation for that software. Software versions are automatically
linked to the documentation, site, and any other data files. A query of a specific software version will
retrieve, through the relational database, which sites currently use that version. A query can also be from
the opposite direction, determmmg whtch version a specnﬁc sne uses.

system. Products (software, documemauon etc.) are slored in, checked out from checked mto and
released from the ADC database. Therefore information about a version is gathered all through
development, testing, and release. Information concerning new and old releases is archived in a historical
database for future use.

12. Record and report the results of configuration audits. ADC archives and retrieves
ASCII files, such as minutes from a Functional Configuration Audit. The file can be displayed (reported

to) a CRT screen or printed on hard copy, if a printer is installed on the hardware platform supported by
ADC. See requirement I1-6 above regarding the gencration of user-defined reports.

Comments: Aide-De-Camp's key strength is its ability to relate various files together whether they
be source code, documentation, manuals, or reports. This permits a project to be ordered logically
in a way that makes software configuration management more effective.

Control

upment
1

Tool Name: Aide-De-Camp - Vendor:
Software Maintenance & Development Systems, Inc.

!

~

Database Management

Configuration Build

Work Area (
" Customization

o
-3
I
‘R
§
%
X
X

2. Select CSCls.

3 For each CSCL identify baselines. developmental configur and d documentation.

4 Trace CSCls to WBS elements when MIL-STD-381 is invoked.

S Decompose each CSCI into CSCs and CSUs.

6. [dentify and document the version of each SCI ponding to the d

7 [dentity, define, and document intertaces.

8. For each CSCI allocate and provid bility for req 3 10 lower SCls and documentation.
9 E lation b each 5CI, its documentation, and other assocusted dais. X i x|
10 Duspiay information sbout an dentfies upon command !

XXX XX [X
X

1. Document and implement plans and procedures for configuration control. x : x X

2. Establish an engineening release svstem. ! x
3. Document and implement a corrective action process. > I x x
4. Apply intemai configuration control pror 1o baselining products. i x
S. Maintain master copies of, and control changes 10, deliverable software and documentation. x

6. Prepare a problerm/change repont for each problem detected.
7. Prepare and classify changes to baselined documentation and software.

XXX
X
X
XX

8. Provide access to documentation and code under configuration control.

1. Provide information in support of formal reviews and audits.
d of discrepancies identified during reviews and audits.

1. Document and impi plans and procedures for performing
2. Establish and maintain software development files (SDFs).
3. Establish software and documentation libranies.

4. Provide and control access to development histories.

5. Prepare and maintain management records, status reports, and software evaiuations records.
6. Analyze configuration status accounting data.

7. Record the curent, approved sottware, d ntation, and identifiers.

8. Record and report the status of request {or engineering changes, devistions, and waivers.
9. Record and report impiementation status of authorized changes.

10. Record and report the iocation of each CSCI version in the field.

11. Ensure information sbout new releases is mcorporated into the status accounting system.
12. Record and report the results of configurstion sudits

X[XX [X[X

X X

X XXX XX

Appendix D: Software Configuration Management (SCM) Tool Evaluation

Product Configuration Management System (PCMS)

Software Configuration Management (SCM) Tool Evaluation

Tool Name: Product Configuration Management System (PCMS)
Version Number: 33
Release Date: 16 July 1993

Frequency of Updates: semiannually
Date of First Release: 1988

Number Sold:
Vendor: SQL Software Ltd.
In Business Since: 1987
Address: 8000 Towers Crescent Dr.
Suite 1350
Vienna, VA 22182
Point of Contact: Mr. Steven F. X. Murphy

Phone Number: 703-760-7895
FAX Number: 703-760-7899
Email Address:

Platforms/Operating Systems: VMS, ULTRIX, and UNIX operating systems; portable to
Digital, SUN, BULL, Sequent, Hewlett Packard, and ICL platforms

Programming Languages Supported: Ada, C, Pascal, FORTRAN, and ASM

Description: PCMS is an active CM tool which combines integrated change management, an
automated configuration build facility, a life cycle and role management engine, a release manager,
and product design and development modules with the full support of an open relational database.
PCMS supports the development, production, and maintenance cycles of the hardware, software,
and documentation items of a product.

SCM Requirements-Functionality Evaluation Matrix: (attached)

Substantiation of SCM Requirements met by Tool Functionality:

1. Configuration Idenuficauon

customization funcnonahty permlls the user to mput rules, plans, and formats govemmg the various
PCMS facilities in order to meet company standards, procedures, and products. For instance, the user can
specify valid types of product-items that will be used to implement the product.

2. Select CSCIs. Although PCMS does not directly select CSClISs for the user, its
decomposition/development control functionality facilitates the user’s effort to decompase the product into
a hierarchy of design-parts which, in wrn, are implemented as product-items (i.e. CSCIs). Any form of
information that can reside on a disk (i.e. software source or object code, specification documents, meeting
minutes, change tracking forms, hardware control documents, etc.) can be implemented as a product-item
and managed as an object within PCMS S relanonal database system

documentation. PCMS s baselme management funcuonalny allows for a snapshot of part or all, of the
product to be taken at any moment, thus preserving the compatible design-parts and product-items
associated with it. PCMS provides two forms of baselines: a design-baseline and a release-baseline. The

D-2

design-baseline includes parts and items which are not frozen, and therefore emulates the development
configuration, whereas the release-baseline captures details for a specific configuration or release of the
product.

4. Trace CSCIs to WBS ¢lements when MIL-STD-881 is invoked. PCMS's database
management and customization functionalities give the user complete flexibility in defining not only the
objects that will reside in the database, but also the attributes of each object. Therefore, CSCls can be
traced to WBS elements by defining a WBS identification attribute for each object.

5. Decompose each CSCI into CSCs and CSUs. PCMS provides for the product to be
decomposed into a hierarchy of design-parts. Design-parts can emulate CSCIs, CSCs, and CSUs. Each
design-part is then implemented by one or more product-items (€.g. specification documents, hardware,
software).

PCMS's database managemenl and decomposmon/development control funcnonalmes provnde for each
object (i.e., design-part, product-item) to be identified by both a part specification and an item
specification. The attributes associated with each of these specifications uniquely identify each SCI
related to the overall product and also are used to define relationships between the SCIs and the design

hierarchy.
7. Identify. define, and document interfaces. PCMS's decomposition/development

control functionality ensures that associations (to include interfaces) between design-parts and product-
items are identified and defined as product-items and are implemented. PCMS's relational database
structure is modeled on these and other established relationships. Interfaces between SClIs can also be
documented in Interface specifications (implemented as product-items), which can be based upon
information obtained from querying the reposnorylhbranes

documentation. PCMS S decomposmon/development control funcnonahty ensures that as the product
evolves, it is broken down into a hierarchy of design-parts which encapsulate all product functions or
requirements. Implementation of design-parts into product-items, and the corresponding establishment of
relationships and assocnauons, ensure that the requnrements are traceable

PCMS's database management and decomposmon/developmem control funcuona.lmes ensure that all
interrelationships between design-parts and product-items are documented in the repository's, or libraries’,
relational database structure.

10. Display information about an identifier upon command. PCMS's database
management functionality, which is based on a object-oriented relational database structure, permits the
user to query the repository or libraries to obtain information about any object (design-part or product-
item). Upon request, PCMS will display any attribute information related to an identifier.

II. Configuration Control

1. Document and implement plans and procedures for configuration control. PCMS's
customization functionality permits the user to input rules, plans, and formats governing the various
PCMS facilities in order to meet company standards, procedures, and products. For instance, the user can
specify both the valid types of change-documents that will be used to identify, track, and implement
changes to the product, and the procedures that will be followed during the change process.

2. Establish an engincering release system. PCMS's database management
functionality provides for libraries to be created in which product-items can be stored. PCMS gives the
customer the flexibility to store each type of product-item (i.e., source code, change documents,
specifications, etc..) in a separate library, or group product-item types together in one or more libraries.
In any event, libraries are created before work is started on the product.

3. Document and implement a corrective action process. PCMS's change control and
customization functionalities enable the user to define the change/enhancement format and procedures to
be used in identifying, tracking, and implementing necessary changes and/or enhancements to the
product.

A : cts. PCMS's baseline
management funcnonalu.y perrmts a desrgn-baselme to be mrabhshed consrsung of the design-parts and
product-items associated with a portion of the product. Because the parts and items associated with a
design-baseline are not frozen, this type of baseline scheme can be used to emulate the developmental
configuration, or the company 's mternal cont" iguration for a product under development

documentation. PCMS s baselme managemem funcuonahty ensures lhat the component versions included
in a release (i.e., deliverable) baseline can not be deleted or amended. Changes to such components can
be made, but PCMS ensures that these changes are recorded as new versions so that the release-baseline
(i.e., master copy) is preserved
6. P ; e : em detected. PCMS's change control
and customization funcuonalmes permit the user to customrze the types of change—documems to be used
and the processes to be followed and thereby unplemenr a problem/change reporting system,

7 v ware. PCMS's
change control and customization functronalmes permrt the user to create muluple change-documem
types. Therefore, changes can be classified by formatting a different type of change-document for each
change classification area (i.e., Class I ECP, Class Il ECP, SCN; critical, major, and minor waivers and
deviations).

work area control and customrzatmn funcuonalmes provrde for a scheme to both provide and restrict
access to product-items under control. The user can assign roles (e.g., designer, developer, reviewer, etc.)
to members of the product team, and can also define types of lifecycles for each and every product-item.
Based on this user-defined control information, PCMS controls access to all product-items contained in
the repository/libraries by ensuring that a team member has the correctly assigned role, given the lifecycle
state of a particular product-item to access that item.

Il Conﬁgurauon Auditing
1. Provide information in support of formal reviews and audits. PCMS's database
management functionality permits the user to query the repository for information in support of reviews
and audits. Such information might include a list of outstanding action items, source code listings, and/or
meeting minutes. PCMS's configuration build functionality permits the user to build various
configurations of the product for both test and ofﬁcral release purposes

As substantiated in II 3 above, PCMS S change control and customization funcuonalmes provrde a
scheme for the identification, tracking, and resolution of discrepancies, regardless of whether they occur
during coding, testing, or auditing.

3. Record and publish meeting minutes. PCMS's database management functionality
permits any form of data that can reside on a disk (i.e., meeting minutes) to be implemented as an object
(product-item), and managed within the repository/libraries.

IV. Configuration Status Accounung

accoynting. Same substantranonas used for 1I-1 above
2. Establish and maintain software development files (SDFs). PCMS's database

management functionality permits the user to establish and manage object relationships. In this manner,
all product-items related to the same design-part can be accessed, and their output managed within a

physical filing system.

3. Establish software and documentation libraries. Same substantiation as used for II-2
above.

4. Provide and control access to development histories. PCMS's work area control and

customization functionalities provide for a scheme to both provide and restrict access to product-items
under control. The user can assign roles (e.g., designer, developer, reviewer, etc.) to members of the

product team and define types of lifecycles for each and every product-item. Based on this user defined
control information, PCMS controls access to all product-items contained in the repository/libraries by
ensuring that a team member has the correctly assigned role, given the lifecycle state of a particular
product-item to access that item.

records. PCMS's customnzauon funcuonahty permns the user to deﬁne producz-uem types (1 L.,
evaluation results document) and then implement any such occurrence of that type as a product-item, and
thus associate it with any applicable product-items and design-parts. PCMS's database management
functionality then permits the user to maintain that object within the repository/libraries.

6. Analyze configuration status accounting data. PCMS's database management and
customization functionalities enable the user to define different types of repori-documents. In these
report-documents, the user can define selection rules so that, when the document is implemented, it
automatically queries the database, compiles information, and integrates this information in the report. In
this fashion, status accounting data, such as discrepancy report trends, can be automatically compiled,
analyzed, and reported upon.

baseline management funcnonalny provndes fora. means to capture the deslgn structure and all associated
product-items at any point in time. A release-baseline can be used to capture the design-parts and
product-items of the current approved conﬁgurauon

waivers. As substanuated in II 3 above, PCMS S change control and customlzauon funcuonalmes provnde
a means for engineering changes, deviations and waivers to be implemented as change-documents.
PCMS's database management functionality permits the user to make interactive queries concerning the
status of these or any other object lypes

9, es. Same substantiation
as used for IV-8 above
10. Record and report the location of each CSCI version in the field. PCMS's baseline

management functionality provides the user with release control provisions to record details pertaining to
which customers have recewed which rclease baselme conﬁgurauons

system. Same subslanuanon as used inlv- 10 above,

12. Record and report the results of configuration audits. Same substantiation as used
in I1I-3 above.

Comments: The key strengths of PCMS appear to be its ability to manage the configuration of
both the software and hardware items comprising a product, to manage all product components as
¢ -1ects within a relational database structure, and to openly interface and exchange data with other
tools i1 the user’s software engineering environment.

Tool Name: Product Configuration Management System (PCMS)
Vendor: SQL Software Ltd.

;
g .

Control

Work Arca Contsol

Change Control

Bascline Management

9. Ensure correlation between each SCI, its docum and other d data.

1. Document and implement plans for performing configuration identification. | Ix
2. Select CSCls.
3. For each CSCL. identify baselines, developmental configuration, and d documentation. x| X x
4. Trace CSCls to WBS clements when MIL.STD-881 is invoked. s x
5. Decompose each CSCl into CSCs and CSUs. >
6. Identify and document the version of each SCI comesponding o the d x| |
7. [dentify, define, and document interfaces. x x
8. For each CSCL. allocste and provide traceability for requirements to lower SCIs and documentation. x

x

lsy

1. Document and implernent plans and procedures for configuration control.

2. Establish an engineering reicase svstem.

3. Documnent and implement a corrective action process.

4. Apply internal configuration control prior to baselining products.

5. Maintain master copies of, and control changes to, deiiverabie software and documentation.

6. Prepare a problem/change report for each problem detected.

7. Prepare and classify changes 1o baselined documentation and software.

XX

8. Provide access to documentation and code under configuration control.

1. Provide information in support of formal reviews and audits.

2. Participate in the resolution of discrepancies identified during reviews and audits.

3. Record and publish meeting minutes.

1. Document and impiement plans and procedures for performing configuration siatus accounting.

2. Establish snd maintain software development files (SDFs).

3. Establish software and documentation libraries.

XX

4. Provide and controt access to development histories.

S. Prepare and maintain management records, status reports, and software evalustions records.

6. Analyze configurstion status accounting data.

XX

X (X |X

7. Record the cusrent, spproved software, documentation, and identifiers.

8. Record and report the status of request for engineering changes, devistions, and waivers.

9. Record and report implementation siatus of suthorized changes.

XX

X [X

X X

10. Record and report the location of each CSCI version in the field

11. Ensure informstion sbout new releases is incorporated into the status accounting system.

XX

12. Record and report the resuits of configuration sudits

D-6

Bibliography
Ambriola, Vincinzo, L. Bendix, and P. Ciancarini. "The Evolution of Configuration Management
and Version Control," Software Engincering Journal, 303-310 (November 1990).

ANSVIEEE Standard 828-1990. /EEE Standard for Software Configuration Management Plans.
New York: The Institute of Electrical and Electronics Engineers, Incorporated, 1990.

ANSVIEEE Standard 1042-1987. IEEE Guide to Software Configuration Management. New
York: The Institute of Electrical and Electronics Engineers, Incorporated, 1988.

Babich, Wayne A. Sofiware Configuration Management: Coordination for Team Productivity.
Reading MA: Addison-Wesley Publishing Company, 1986.

Berlack, H. Ronald. Software Configuration Management. New York: John Wiley and Sons,
Incorporated, 1992.

Bersoff, Edward H. "Elements of Software Configuration Management," IEEE Transactions on
Software Engineering, 10: 79-87 (January 1984).

-——and Alan M. Davis. "Impacts of Life Cycle Models on Software," Communications of the
ACM, 34: 105-118 (August 1991).

-, Vilas D. Henderson, and Stan G. Siegel. Software Configuration Management: An
Investment in Product Integrity. Englewood Cliffs NJ: Prentice-Hall, Incorporated, 1980.

-—-, Vilas D. Henderson, and Stan G. Siegel. "Attaining Software Product Integrity," Turorial:
Software Management. 341-348. New York: IEEE Press, 1981 (EH0189-1).

----. "Software Configuration Management: A Tutorial," Tutorial: Software Configuration
Management. 24-32. New York: IEEE Press, 1980 (EHO 169-3)..

Brown, Bradley J. "Checksum Methodology as a Configuration Management Tool," Journal of
Systems and Sofiware, 7. 141-143 (1987).

Dean, William A. "Why Worry About Configuration Management?" Defense Systems
Management Review, 2: 21-29 (Summer 1979).

Department of Defense. Configuration Management. MIL-STD-973. Washington: DoD,
17 April 1992.

Department of Defense. Defense System Software Development. DoD-STD-2167A.
Washington: DoD, 29 February 1988.

BIB-1

Department of Defense. Defense System Software Quality Program. DoD-STD-2168.
Washington: DoD, 29 April 1988.

Department of Defense. Mission Critical Computer Resources Management Guide. Ft. Belvoir
VA: Defense Systems Management College, no date.

Feiler, Peter H. "Configuration Management Models in Commercial Environments," CMU/SEI-
91-TR-7, Pittsburgh PA: Software Engineering Institute (SEI), Camnegie Mellon
University, March 1991.

Ferens, Daniel V. Defense System Software Project Managment. Wright-Patterson AFB OH:
Air Force Institute of Technology, 1990.

-——-. Class handout, IMGT 626, Software Product Assurance. School of Systems and Logistics,
Air Force Institute of Technology, Wright-Patterson AFB OH, Spring Quarter 1993.

Firth, Robert, Vicky Mosley, Richard Pethia, Lauren Roberts, and William Wood. "The Guide to
the Classification and Assessment of Software Engineering Tools," CMU/SEI-87-TR-10,
Pittsburgh PA: Software Engineering Institute (SEI), Carnegie Mellon University, August
1987.

Forte, Gene. "Configuration Management," IEEE Software, 9: 79 (May 1992).

Hall, Patrick A.V. "Software Development Standards," Software Engineering Journal, 4: 143-
147 (May 1989).

Harter, Richard. "Object Oriented Software Configuration Management," Dr. Dobb's Journal,
16: 36-71 (October 1991).

McCarthy, Rita. "Applying the Technique of Configuration Management to Software," Tutorial:
Software Configuration Management. 263-268. New York: IEEE Press, 1980 (EHO
169-3).

Millradt, Bob. "Configuration Management: How Much Do You Need?", 1990 CASE Outlook,
2: 6-13 (March 1990).

Paulk, M. C., C. Curtis, and M. B. Chrisses, "Capability Maturity Model for Software,"
CMU/SEI-91-TR-24, Pittsburgh PA: Software Engineering Institutc (SEI), Camegie
Mellon University, March 1991.

Richartz, John. "Software Configuration Management Tools," UNLX Review, 8: 87-95 (May
1990).

Roetzheim, William H. Developing Software to Government Stardards. Englewood Cliffs NJ:
Prentice-Hall, Incorporated, 1991.

BIB-2

Software Maintenance & Development Systems (SMDS), Incorporated. ADC/CM Model 209
User's Guide. Concord MA: Softwarc Maintenance & Development Systems,
Incorporated, March 1993.

——. Aide-De-Camp, Command Reference Guide. Concord MA: Software Maintenance &
Development Systems, Incorporated, September 1992,

—~——. Aide-De-Camp, ADC Tutorial for UNLX Systems. Concord MA: Software Maintenance &
Development Systems, Incorporated, 1992.

-—. Aide-De-Camp, User's Guide. Concord MA: Software Maintenance & Development
Systems, Incorporated, September 1992.

-——. X-ADC, Administrator's Guide. Concord MA: Software Maintenance & Development
Systems, Incorporated, April 1993.

. X-ADC, User's Guide. Concord MA: Software Maintenance & Development Systems,
Incorporated, April 1993.

SQL Software Limited. PCMS Overview, Edition 2.1. Vienna VA: SQL Software Limited,
1992.

Sweetman, Sierri L. "Utilizing Expert Systems to Improve the Configuration Management
Process," Project Management Journal, 11: 5-12 (March 1990).

Whitgift, David. Methods and Tools for Software Configuration Management. West Sussex
UK: John Wiley and Sons, Incorporated, 1991.

BIB-3

Vita

Captain Wayne M. Descheneau was bom in Biloxi, Mississippi on 23 February 1965 to
an Air Force family. Because of extensive travel, he attended numerous schools and in 1983 he
graduated from West High School in Manchester, New Hampshire. That same year he attended
Boston University on a four year USAF Reserve Office Training Corps (ROTC) Scholarship. In
1987, he graduated as a Distinguished Graduate in his ROTC program and received a Bachelor of
Science degree in Aerospace Engineering. His first assignment in the USAF was to the Directorate
of Materiel Management, Ogden Air Logistics Center (ALC) at Hill AFB, Utah. He started as a
project engineer for the F-16 Flight Simulator Program where he performed technical evaluation
and management efforts related to modifications made to the system. He was later moved to the
same position on the E-3 AWACS Air Crew Training Device Program which supported ail such
US, NATO, and Saudi Arabian systems. He was then chosen to be the lead engineer for the F-15
Flight Simulator Program. His responsibilities included managing the program's engineering staff,
developing contract specifications and work requirements, and evaluating and managing multi-
million dollar software modification efforts. He played a key role in the development of the F-15C
Training System Support Center (TSSC) and statement of work which resulted in reducing
modification costs and improving system supportability. In May 1992, Captain Descheneau
entered the Software Systems Management program in the School of Systems and Logistics, Air

Force Institute of Technology.

Permanent Address: 20 Mulberry Lane
Bedford, New Hampshire 03110

VIT-1

Vita

Captain Neil W. Robinson was bom in Rutland, Vermont on 29 December 1965.
Although his family was not military, he attended schools in Vermont, New York, and New Jersey
during his formative years and in 1984, graduated from Ridgewood High School in Ridgewood,
New Jersey. That same year, he entered the United States Air Force Academy as a member of the
Class of 1988. Four years later, he graduated with a Bachelor of Science degree in Engineering
Mechanics (concentration in Structures). His first assignment in the USAF was to the Directorate
of Materiel Management, Ogden Air Logistics Center (ALC) at Hill AFB, Utah. He started as an
F-16 Landing Gear system engineer where he drafted engineering specification and qualification
requirements, analyzed test data for proposed new and/or modified landing gear systems, and
resolved technical problems for depot and field maintenance units. Later he became the lead
engineer for the F-111 Flight Simulator Program. As the lead engineer, he was responsible for the
technical evaiuation and management of US, NATO, and Foreign Military Sales F-111 training
device modifications and programs support. This role encompassed developing modification
purchase descriptions, statements of work, and development, test , and evaluation criteria,
evaluating contractor proposals for technical accuracy, validating engineering drawings, data, and
software specifications, and directing design reviews and test efforts. In May 1992, Captain
Robinson entered the Software Systems Management program in the School of Systems and

Logistics, Air Force Institute of Technology.

Permanent Address: 5248 Cobble Creek Drive
Salt Lake City, Utah 84117

VIT-2

i Form Approved

t REPORT DOCUMENTAT'ON PAGE ! OMB No. 0704-0:88

PUDIC reEurt-l DGIIEN 137 T2y - T ecian 2 ATIIMalion »y 25UimMataq 1o jverage | "oyr ger 2splrse. nc LOING IS Mz L0 rE GRWIN 3RSl 2TTT 23T huwd ™
i gatherng ard Maint3ining the 2103 nended. And (ICMDIELNS 3nd revieaing the L 2iestion Ot intarmatcn j=nd (3Mmments regs 2ing this Durden 2st,m 2T T el it
| COMECUOR >F .AT3MAT 2N, AOLT NG SUGIRSUONS 1O TRGUIINT TRy DUIQeN 10 N ISMNGIDN AeIAQUICIAMS Sar.1ies, Liraciorate '0r NISrmation DReratiins sng 2o 17, 5 =tiersun
' Daves gl aay, Suite 1204, arnngtan, S 3 [2202-3302. ang 1 the Othice Ot Management ang Juaget. PiperaGie Reauct on Pre, »2(2704-0°83), Aastingtin - (usl)
1 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
{ December 1993 Master's Thesis
. TITLE AND SUBTITLE + 5. FUNDING NUMBERS
TKE DEVELOPMENT AND USE OF AN EVALUATION
MECHANISM FOR THE ASSESSMENT OF SCFTVARFE
CONFIGURATION MANAGEMENT TOOLS
- AUTHOR(S)
Wayne M. Descheneau, Captain, USAF

Neil W. Robinson, Captain, USAF

»

— e s,

W e— e . R AP T < ik A et

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) l8 PERFORMING ORGANIZATION
! REPORT NUMBER
Air Force Institute of Technology, WPAFB "AFIT/GSS/LAS/93D-3
OF 45433-6583
9. SPONSORING ; MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING . MONITGRING

AGENCY REPORT NUMBER
00-ALC/TISAC, Hill AFB UT 84056

e s o

11. SUPPLEMENTARY NOTES

123. DISTRIBUTION / AVAILABILITY STATEMENT ' 12b. DISTRIBUTION CODE

IT oy r———

Approved for public release; distribution
unlimited

- 13. ABSTRACT (Maximum 200 words)

.

This study investigated the development of & mech-
anism for use in the evaluation of Software Configuration Management
(SCM) tools. An examination of applicable DoD standards identified the

. SCM requirements that could be levied on a development contractor, and
a literature search revealed the functionality common to various auto-

»mated tools. These two sets of information were organized intc a

,matrix, and for each requirement that was met, the intersection on the

;matrix of the requirement and each functionality used to meet that

‘requirement was checked. 1In addition to the matrix, the mechanism

sconsisted of general information about a given tool and an area to sub-

jstantiate each requirement identified as being met by the tool. The
evaluation mechanism was then used to assess twec commercially available

: SCM tools: Aide-De-Camp and the Product Configuration Management

'System. The evaluaticn mechanism prescribes a method for evaluating

complex SCM tools and forces the evaluator to gain intimate knowledge

of a tool to effectively assess the tool's merits for a given effort.

14. SUBJECT TERMS 15. NUMBER ?F') ZAGES

16. PRICE COOE

configuration management, software engineering,
taxonomy, life cycles, computer applications

17. SECURITY CLASSIFICATION § 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT .
. OF REPORT OF THIS PAGE OF ABSTRACT ;
Unclassified Unclassified Unclassified UL !
i

NSN 7540-01-280-5500 Standard Form 298 (Rev 2.89)

Proscobed by ANSE Std 239418
98.102

AFIT Control Number AFIT/GSS/LAS/93D-3

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications
of AFIT thesis research. Please return completed questionnaires to: DEPARTMENT OF THE
AIR FORCE, AIR FORCE INSTITUTE OF TECHNOLOGY/LAC, 2950 P STREET, WRIGHT
PATTERSON AFB OH 45433-7765

1. Did this research contribute to a current rescarch project?
a. Yes b. No

2. Do you believe this research topic is significant enough that it would have becn rescarched (or
contracted) by your organization or another agency if AFIT had not researched it?

a. Yes b. No

3. The benefits of AFIT research can ofien be expressed by the equivalent value that your agency
received by virtue of AFIT performing the research. Please estimate what this rescarch would
have cost in terms of manpower and/or dollars if it had been accomplished under contract or if it
had been done in-house.

Man Years $

4. Often it is not possible to attach equivalent dollar values to research, although the results of
the research may, in fact, be important. Whether or not you were able 10 establish an equivalent
value for this research (3, above) what is your estimate of its significance?

a. Highly b. Significant c. Slighdy d. Of No
Significant Significant Significancc
5. Comments

Name and Grade Organization

Position or Title_ Address

DEPARTMENT OF THE AIR FORCE
AFIT/LAC Bidg 641

2950 P St

45433.7765

OFFICIAL BUSINESS

Il

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 1006 DAYTON OH

POSTAGE WILL BE PAID BY U.S. ADDRESSEE
Wright-Patterson Air Force Base

AFIT/LAC Bidg 641
2950 P St
Wright-Patterson AFB OH 45433-9905

Llohddalobidiadbdbibaddo b ddddedd

NO POSTACE
NECESSARY
{F MAILED

IN THE

UNITED STATES

